MHB [ASK] Derivative of an Algebraic Fraction find f(0) + f'(0)

AI Thread Summary
The discussion revolves around calculating f(0) + f'(0) for the function f(x) = (3x^2 - 5) / (x + 6). The calculations provided confirm that f(0) + f'(0) equals -25/36, which is not among the provided answer choices. Participants agree that the calculations are correct and suggest verifying the question's details. The thread highlights a potential oversight in the answer options given. The conclusion emphasizes that the calculated result does not match any listed answers.
Monoxdifly
MHB
Messages
288
Reaction score
0
If $$f(x)=\frac{3x^2-5}{x+6}$$ then f(0) + f'(0) is ...
A. 2
B. 1
C. 0
D. -1
E. -2

What I did:
If $$f(x)=\frac{u}{v}$$ then:
u =$$3x^2-5$$ → u' = 6x
v = x + 6 → v' = 1
f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$
f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ + $$\frac{6(0)(0+6)-(3(0^2)-5)(1)}{(0+6)^2}$$ = $$\frac{3(0)-5}{6}$$ + $$\frac{0(0+6)-(3(0)-5)}{6^2}$$= $$\frac{0-5}{6}$$ + $$\frac{0-(0-5)}{36}$$ = $$\frac{-5}{6}$$ + $$\frac{0-(-5)}{36}$$ = $$\frac{-30}{36}$$ + $$\frac{0+5}{36}$$ = $$\frac{-25}{36}$$
The answer isn't in any of the options. I did nothing wrong, right?
 
Mathematics news on Phys.org
Monoxdifly said:
If $$f(x)=\frac{3x^2-5}{x+6}$$ then f(0) + f'(0) is ...
A. 2
B. 1
C. 0
D. -1
E. -2

What I did:
If $$f(x)=\frac{u}{v}$$ then:
u =$$3x^2-5$$ → u' = 6x
v = x + 6 → v' = 1
f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$
f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ + $$\frac{6(0)(0+6)-(3(0^2)-5)(1)}{(0+6)^2}$$ = $$\frac{3(0)-5}{6}$$ + $$\frac{0(0+6)-(3(0)-5)}{6^2}$$= $$\frac{0-5}{6}$$ + $$\frac{0-(0-5)}{36}$$ = $$\frac{-5}{6}$$ + $$\frac{0-(-5)}{36}$$ = $$\frac{-30}{36}$$ + $$\frac{0+5}{36}$$ = $$\frac{-25}{36}$$
The answer isn't in any of the options. I did nothing wrong, right?
Your calculation is correct, and the answer is not one of the listed options. Maybe you should check whether you read the question correctly.
 
Yes, the correct answer is -\frac{25}{36}.
 
OK, thanks for the clarifications...
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top