Monoxdifly
MHB
- 288
- 0
If $$f(x)=\frac{3x^2-5}{x+6}$$ then f(0) + f'(0) is ...
A. 2
B. 1
C. 0
D. -1
E. -2
What I did:
If $$f(x)=\frac{u}{v}$$ then:
u =$$3x^2-5$$ → u' = 6x
v = x + 6 → v' = 1
f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$
f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ + $$\frac{6(0)(0+6)-(3(0^2)-5)(1)}{(0+6)^2}$$ = $$\frac{3(0)-5}{6}$$ + $$\frac{0(0+6)-(3(0)-5)}{6^2}$$= $$\frac{0-5}{6}$$ + $$\frac{0-(0-5)}{36}$$ = $$\frac{-5}{6}$$ + $$\frac{0-(-5)}{36}$$ = $$\frac{-30}{36}$$ + $$\frac{0+5}{36}$$ = $$\frac{-25}{36}$$
The answer isn't in any of the options. I did nothing wrong, right?
A. 2
B. 1
C. 0
D. -1
E. -2
What I did:
If $$f(x)=\frac{u}{v}$$ then:
u =$$3x^2-5$$ → u' = 6x
v = x + 6 → v' = 1
f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$
f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ + $$\frac{6(0)(0+6)-(3(0^2)-5)(1)}{(0+6)^2}$$ = $$\frac{3(0)-5}{6}$$ + $$\frac{0(0+6)-(3(0)-5)}{6^2}$$= $$\frac{0-5}{6}$$ + $$\frac{0-(0-5)}{36}$$ = $$\frac{-5}{6}$$ + $$\frac{0-(-5)}{36}$$ = $$\frac{-30}{36}$$ + $$\frac{0+5}{36}$$ = $$\frac{-25}{36}$$
The answer isn't in any of the options. I did nothing wrong, right?