[ASK] Derivative of an Algebraic Fraction find f(0) + f'(0)

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Derivative Fraction
Click For Summary
SUMMARY

The discussion centers on calculating the value of f(0) + f'(0) for the function f(x) = (3x² - 5) / (x + 6). The user correctly applies the quotient rule for differentiation, yielding f'(x) = (6x(x + 6) - (3x² - 5)(1)) / (x + 6)². Upon evaluating f(0) + f'(0), the result is -25/36, which is not listed among the provided multiple-choice options. The conclusion confirms that the calculation is accurate, and the discrepancy lies in the options given.

PREREQUISITES
  • Understanding of algebraic functions and their properties
  • Familiarity with the quotient rule of differentiation
  • Basic knowledge of limits and continuity
  • Ability to evaluate functions and derivatives at specific points
NEXT STEPS
  • Review the quotient rule in calculus for differentiating rational functions
  • Practice evaluating derivatives at specific points using various functions
  • Explore common pitfalls in multiple-choice questions related to calculus
  • Learn about the implications of incorrect answer options in mathematical problems
USEFUL FOR

Students studying calculus, educators teaching differentiation techniques, and anyone preparing for mathematics exams that include rational functions and derivatives.

Monoxdifly
MHB
Messages
288
Reaction score
0
If $$f(x)=\frac{3x^2-5}{x+6}$$ then f(0) + f'(0) is ...
A. 2
B. 1
C. 0
D. -1
E. -2

What I did:
If $$f(x)=\frac{u}{v}$$ then:
u =$$3x^2-5$$ → u' = 6x
v = x + 6 → v' = 1
f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$
f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ + $$\frac{6(0)(0+6)-(3(0^2)-5)(1)}{(0+6)^2}$$ = $$\frac{3(0)-5}{6}$$ + $$\frac{0(0+6)-(3(0)-5)}{6^2}$$= $$\frac{0-5}{6}$$ + $$\frac{0-(0-5)}{36}$$ = $$\frac{-5}{6}$$ + $$\frac{0-(-5)}{36}$$ = $$\frac{-30}{36}$$ + $$\frac{0+5}{36}$$ = $$\frac{-25}{36}$$
The answer isn't in any of the options. I did nothing wrong, right?
 
Physics news on Phys.org
Monoxdifly said:
If $$f(x)=\frac{3x^2-5}{x+6}$$ then f(0) + f'(0) is ...
A. 2
B. 1
C. 0
D. -1
E. -2

What I did:
If $$f(x)=\frac{u}{v}$$ then:
u =$$3x^2-5$$ → u' = 6x
v = x + 6 → v' = 1
f'(x) =$$\frac{u'v-uv'}{v^2}$$=$$\frac{6x(x+6)-(3x^2-5)(1)}{(x+6)^2}$$
f(0) + f'(0) = $$\frac{3(0^2)-5}{0+6}$$ + $$\frac{6(0)(0+6)-(3(0^2)-5)(1)}{(0+6)^2}$$ = $$\frac{3(0)-5}{6}$$ + $$\frac{0(0+6)-(3(0)-5)}{6^2}$$= $$\frac{0-5}{6}$$ + $$\frac{0-(0-5)}{36}$$ = $$\frac{-5}{6}$$ + $$\frac{0-(-5)}{36}$$ = $$\frac{-30}{36}$$ + $$\frac{0+5}{36}$$ = $$\frac{-25}{36}$$
The answer isn't in any of the options. I did nothing wrong, right?
Your calculation is correct, and the answer is not one of the listed options. Maybe you should check whether you read the question correctly.
 
Yes, the correct answer is -\frac{25}{36}.
 
OK, thanks for the clarifications...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
903
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K