MHB Asymptotic error formula for the trapezoidal rule

  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Error Formula
kalish1
Messages
79
Reaction score
0
I need to use the asymptotic error formula for the trapezoidal rule to estimate the number n of subdivisions to evaluate $\int_{0}^{2}e^{-x^2}dx$ to the accuracy $\epsilon=10^{-10}$. I also need to find the approximate integral in this case. I would like to know if my attempt is correct. Thanks in advance for any help.

**My attempt:** $E_n^T(f)\approx -h^2/12[f'(b)-f'(a)]. f(x)=e^{-x^2}, f'(x)=-2xe^{-x^2}.$

So $E_n^T(f)\approx h^2/(4e^4)$ and since $h=1/n$, we have to find an n that satisfies the inequality $\frac{1}{4e^4n^2}\leq 10^{-10}$. We obtain $n \approx 6767$. The approximate integral is ??
 
Mathematics news on Phys.org
Hmm. I don't quite get what you get. I have
\begin{align*}
E_{N}(f)& \approx - \frac{(b-a)^{2}}{12 N^{2}}[f'(b)-f'(a)] \\
&= \frac{2^{2}}{12 N^{2}}[4e^{-4}-0] \\
&= \frac{4}{3 N^{2}e^{4}}.
\end{align*}
Hence, we need
$$ \frac{4}{3 N^{2}e^{4}} \le 10^{-10},$$
or
$$N \ge \frac{2 \cdot 10^{5}}{ \sqrt{3} \, e^{2}} \approx 15627.2,$$
so let $N=15628$. You must set up a trapezoidal scheme with this many sub-intervals, and evaluate. You're going to have:
$$A \approx \frac{2-0}{2 \cdot 15628} \sum_{j=0}^{15627}[f(x_{j})+f(x_{j+1})]
=\frac{1}{15628} \sum_{j=0}^{15627}[e^{-(2j/15628)^{2}}+e^{-(2(j+1)/15628)^{2}}]$$
$$=\frac{1}{15628} \sum_{j=0}^{15627}[e^{-(j/7814)^{2}}+e^{-((j+1)/7814)^{2}}].$$
 
Great! CCC. (Crystal clear clarification.)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top