I have an integral like(adsbygoogle = window.adsbygoogle || []).push({});

[tex]F(\lambda)=\int_{-\infty}^\infty e^{i\lambda x} f(x) dx,[/tex]

where [itex]\lambda[/itex] is a real parameter and [itex]f(x)[/itex] is an integrable function of x. I am looking for a method to calculate an approximate form of [itex]F(\lambda)[/itex] for very small [itex]|\lambda|[/itex]. Methods like stationary phases or steepest descent can sometimes be used to calculate similar asymptotic expressions for large values of the parameter, but I am not sure how to proceed in case [itex]\lambda[/itex] is small.

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Asymptotic form of Fourier type integral

**Physics Forums | Science Articles, Homework Help, Discussion**