MHB -aux11.outcomes in card drawing

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Drawing
AI Thread Summary
The discussion focuses on calculating the outcomes of drawing two cards from a standard deck of 52 cards. The sample space for this scenario is represented as combinations, where the order of drawing does not matter. The total number of outcomes is calculated using the combination formula C(52,2), which equals 1326. This can also be derived by considering the choices for each card drawn and adjusting for the non-importance of order. The conversation highlights the connection between different methods of arriving at the same result in combinatorial problems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
We draw cards from a deck of 52 cards

a) list the sample space if we draw two cards at a time

my ans to this is ((H2,S2)...(C2,D2))

b) How many outcomes do you have in this experiment

but I don't know how they got the answer of 1326

thanks ahead...
 
Last edited:
Mathematics news on Phys.org
Are you familiar with combinations? It's a way of counting groupings when the order doesn't matter. Since for this experiment AhAs is the same as AsAh, then we can say the order doesn't matter and use combinations. So the total number of outcomes is [math]\binom{52}{2}[/math]. Do you know how to calculate that?
 
my calculator gave

C(52,2) = 1326

so I looked it up $C(n,r) = \frac{n!}{(n-r)!r!}$

However they didn't have this in the text?
 
Yep, that's the correct formula. I don't know why this isn't in your book. Perhaps they want you to use a more intuitive method. For the first card you have 52 choices and for the second you have 51 choices. However, since order doesn't matter you should divide by 2 since we don't want to count AsAh and AhAs twice. So you have [math]\frac{52*51}{2}=1326[/math]. That's exactly the same calculation as [math]\binom{52}{2}[/math] but approaches it from a different way in the set up.
 
SSCtw.png
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top