I Average electrostatic field over a spherical volume

AI Thread Summary
The discussion centers on the average electrostatic field over a spherical volume of radius R, equating it to the field at the position of a point charge with a uniform charge density of negative q. Concerns are raised about the validity of this average, particularly at the point where the electric field becomes infinite, suggesting the need for a Dirac delta function to accurately represent the field at that infinitesimal volume. The dialogue questions how to reconcile the average field being the same in both cases despite the singularity at the point charge. Additionally, there is skepticism about whether the divergence of the electric field at the origin indicates a limitation of classical theory and how to address this in calculations. The conclusion emphasizes that the average field may be meaningless for uniform charge distributions, as the vector nature of the field results in cancellation.
Ahmed1029
Messages
109
Reaction score
40
IMG_٢٠٢٢٠٥١٥_١٤٠٦١٦.jpg

this formula in the picture is the average electrostatic field over a spherical volume of radius R. It is the same expression of the electrostatic field, at the (position) of the point charge, of a volume of charge of uniform density whole entire charge is equal to (negative)q.

My question is : since the expression blows up at the position of the point charge in both cases, we know that this integrand isn't the whole story and there is an expression involving the dirac delta function for the infinitesimal volume at the position of the point charge in both cases. How do we conclude then that the average field is the same in both cases? sure they are the same away from the (position) of the point charge, but what guarantees that in an infinitesimal volume where the electric field blows up in both cases they are going to be the same? Maybe the expression involving the delta function is different in either case!

Also I'm curious to know if the electric field blowing up at the origin is just a shortcoming of the classical theory. If so, how do I deal with it in my calculations?
 
Last edited by a moderator:
Physics news on Phys.org
Ahmed1029 said:
It is the same expression of the electrostatic field, at the (position) of the point charge, of a volume of charge of uniform density whole entire charge is equal to (negative)q.
This is impossible to parse. What is your charge distribution and what are you trying to compute?
 
This average is meaningless. For uniform charge distribution it is zero anyway. The field is a vector and for any given elementary volume there is another one with the vector in the opposite direction.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
I know that mass does not affect the acceleration in a simple pendulum undergoing SHM, but how does the mass on the spring that makes up the elastic pendulum affect its acceleration? Certainly, there must be a change due to the displacement from equilibrium caused by each differing mass? I am talking about finding the acceleration at a specific time on each trial with different masses and comparing them. How would they compare and why?
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top