Average Kinetic Energy of Electron in the Conduction Band

  • Thread starter Teymur
  • Start date
  • #1
Teymur
16
3
Homework Statement:
Show that:
$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$
Relevant Equations:
$$<\:K.E.>\:=\frac{\left(total\:K.E.\right)}{\left(no.of\:electrons\right)}$$

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$
Hello,
I've seen in a few books on solid state physics that one can deduce an expression for average K.E.:

$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$

from the following:

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$

I can't, however, find any work through of how to do so. I've had a go at the bottom part:

where ##n=\int g\left(E\right)f\left(E\right)dE## and ##\int \:x^{\frac{1}{2}}exp\left(-x\right)dx=\frac{\pi \:^{\frac{1}{2}}}{2}##

and

##g\left(E\right)=\frac{\left(2m_e\right)^{\frac{3}{2}}\left(E-E_c\right)^{\frac{1}{2}}}{2\pi ^2ℏ^3}## and ##f\left(E\right)\approx exp\left(\frac{\mu -E}{k_B\:T}\right)##

to get:

$$n=2\left(\frac{m_ek_B\:T}{2\pi ℏ^2}\right)^{\frac{3}{2}}\:exp\left(\frac{\mu -E_c}{k_B\:T}\right)$$

But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
 

Answers and Replies

  • #2
Teymur
16
3
p.s. I used: ##x=\left(\frac{E-E_c}{k_B\:T}\right)## for the integral: ##\int \:g\left(E\right)f\left(E\right)dE \rightarrow \int \:x^{\frac{1}{2}}exp\left(-x\right)dx##
 
  • #3
TSny
Homework Helper
Gold Member
13,963
4,137
But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
The numerator integration is very similar to the integration in the denominator. The factor ##\left(E\:-E_c\right)## has a simple relation to ##x##.
 
  • Like
Likes PeroK and hutchphd
  • #4
Teymur
16
3
Aha .. I'm not sure why I didn't spot that.
 
  • #5
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,468
13,388
Another very important trick used in statistical physics is to calculate the denominator, the socalled "partition sum" and then take a derivative wrt. ##\beta=1/(k_{\text{B}} T)##, which is an application of the celebrated Feynman-Hellmann theorem.
 

Suggested for: Average Kinetic Energy of Electron in the Conduction Band

Replies
30
Views
328
Replies
4
Views
190
Replies
1
Views
509
Replies
3
Views
888
Replies
1
Views
672
Replies
0
Views
535
  • Last Post
Replies
0
Views
1K
Top