- 3,372
- 465
Homework Statement
You make a measurement of two variables with 100% correlated systematic uncertainty:
x_1 \pm \Delta x_1^{stat} \pm \Delta x_1^{sys} = 1.0 \pm 0.1 \pm 0.1
x_2 \pm \Delta x_2^{stat} \pm \Delta x_2^{sys} = 1.2 \pm 0.1 \pm 0.2
The average is taken by:
\bar{x} = \sum_{i=1}^2 w_i x_i
where w_i = \frac{\sum_j (C^{-1})_{ij}}{ \sum_{kj} (C^{-1})_{kj}} and C=C^{stat}+ C^{sys} the covariance matrix of the measurement.
Homework Equations
All given above
The Attempt at a Solution
I calculate C to get its inverse and find the weights.
For that I deduced that:
C^{stat} = \begin{pmatrix} (\sigma^{stat}_1)^2 & 0 \\ 0 & (\sigma_2^{stat})^2 \end{pmatrix}
and
C^{sys} =\begin{pmatrix} (\sigma^{sys}_1)^2 & \sigma^{sys}_1 \sigma^{sys}_2 \\ \sigma^{sys}_1 \sigma^{sys}_2 & (\sigma_2^{sys})^2 \end{pmatrix}
due to the 100% correlated systematic uncertainties \sigma_{12}^{sys} = \rho \sigma_1^{sys} \sigma_2^{sys}= \sigma_1^{sys} \sigma_2^{sys}.
When I go to get C then:
C=C^{stat} +C^{sys}= \begin{pmatrix} 0.01 & 0 \\ 0 & 0.01 \end{pmatrix} +\begin{pmatrix} 0.01 & 0.02 \\ 0.02 & 0.04 \end{pmatrix} =\frac{1}{100} \begin{pmatrix}2 & 2 \\ 2 & 5 \end{pmatrix}
The inverse of this matrix is C^{-1} = \frac{50}{3} \begin{pmatrix} 5 & -2 \\ -2 & 2 \end{pmatrix}.
My problem is that with such a matrix I am getting for the weights:
w_1 =\frac{\sum_j (C^{-1})_{1j}}{ \sum_{kj} (C^{-1})_{kj}}= \dfrac{\frac{50}{3} (5-2)}{ \frac{50}{3}(5+2-2-2)}= 1
And
w_2 = 0 (since C_{21}^{-1}= - C_{22}^{-1}).
I don't know why this is happening... Any idea?
Obviously this doesn't seem to make sense because in the averaging I won't get any contribution from x_2...
Last edited: