Avg. of sum of independent variables

  • Thread starter Pushoam
  • Start date
  • #1
Pushoam
950
47

Homework Statement


upload_2017-9-11_10-15-19.png


Homework Equations




The Attempt at a Solution


The probability that ##X_1 ## is between ## X_1 ## and ## X_1 + dX_1 ## and ##X_2 ## is between ## X_2 ## and ## X_2 + dX_2 ## and so on till the nth variable is
dP(##X_1,
X_2, ..., X_n) = p ( X_1) p( x_2) p(X_3)...p(X_n) dX_1 dX_2 ...dX_n
\\ dP(Y) = p(Y) dY
\\<Y>= \int Yp(Y) dY
\\ assuming dP(y) =
dP(X_1,
X_2, ..., X_n)

\\= \int ( X_1 +X_2 + ... + X_n) p ( X_1) p( x_2) p(X_3)...p(X_n) dX_1 dX_2 ...dX_n
\\ = \int X_1 p ( X_1)dX_1+ \int X_2 p ( X_2)dX_2+ ...+\int X_n p ( X_n)dX_n
\\= <X_1> + <X_2>+...+<X_n>
\\= n <X>##
Is the assumption o.k?
 

Answers and Replies

  • #2
Orodruin
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Gold Member
20,004
10,661
You are never really using that assumption, you are using
$$
\langle Y \rangle = \int Y(x_1,\ldots,x_n) P(x_1,\ldots, x_n) dx_1 \ldots dx_n.
$$
If you want to express ##P(Y)## as a one-variable function you need to integrate out the ##X_i## variables, essentially
$$
P(Y) = \int \delta(Y-x_1-\ldots-x_n) P(x_1,\ldots,x_n) dx_1 \ldots dx_n.
$$
Note that this leads to
$$
\langle f(Y)\rangle = \int f(y) P(y) dy = \int f(y) \delta(y-x_1-\ldots-x_n) P(x_1,\ldots,x_n) dx_1 \ldots dx_n dy
= \int f(x_1+\ldots+x_n) P(x_1,\ldots,x_n) dx_1 \ldots dx_n,
$$
so it is compatible with the original probability distribution.
 
  • #3
Pushoam
950
47
Thank you for this insight.
 

Suggested for: Avg. of sum of independent variables

Replies
26
Views
464
Replies
3
Views
466
Replies
13
Views
433
Replies
8
Views
384
Replies
11
Views
771
Replies
2
Views
239
Replies
5
Views
445
Replies
16
Views
562
Top