A B and A in Curved Space Time: Does \nabla \times A =B?

yourWitten
Messages
2
Reaction score
0
By definition of the vector potential we may write

\nabla \times A =B

at least in flat space. Does this relation hold in curved space? I am particularly interested if we can still write this in a spatially flat Friedmann-Robertson-Walker background with metric ds^2=dt^2-a^2(dx^2+dy^2+dz^2) and if not, how it should be modified.

I know this question is extremely simple but I'm still developing intuition on GR.
 
Physics news on Phys.org
Curl as such only exists in 3-dimensional Euclidean space. You need to look at a generalisation in the 4d case of both flat and curved spacetimes, namely the exterior derivative. In relativity, both the electric and magnetic fields together form a second rank tensor F called the electromagnetic field tensor. This in turn can be written in terms of the exterior derivative as F=dA where A is the 4-potential containing both the electric scalar and the magnetic vector porential. Of course, what is what (electric/magnetic) depends on the reference frame.
 
  • Like
Likes vanhees71 and PeroK
yourWitten said:
@Orodruin I am familiar with the covariant expressions of Maxwell's equations but having trouble working this out. In particular http://sedici.unlp.edu.ar/bitstream/handle/10915/125010/Documento_completo.pdf-PDFA.pdf?sequence=1 Eq. 2.24 suggests that the formula remains the same, but I don't see why.
Maybe I'm wrong, but isn't this simply because the Maxwell equations in general covariant form are the same as the equations in flat spacetime because the torsion vanishes? If they retain the same form, the expressions for B and E in terms of the gauge field don't change either.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top