- #1

ChiralSuperfields

- 1,199

- 132

- Homework Statement
- Please see below

- Relevant Equations
- Please see below

For this problem,

The solution is

However, I would like to understand how to solve this using Biot–Savart Law.

So far my working is:

## \vec {dB} = \frac {\mu_0Ids\sin\theta} {4\pi r^2}##

However, I'm not sure what to do about the ## r^2 ## since the wire is infinitely long. I am thinking about having the limits of integration to be ## \theta_1 = 0 ## and ## \theta_2 = \frac {\pi} {2} ##

Many thanks!

The solution is

However, I would like to understand how to solve this using Biot–Savart Law.

So far my working is:

## \vec {dB} = \frac {\mu_0Ids\sin\theta} {4\pi r^2}##

However, I'm not sure what to do about the ## r^2 ## since the wire is infinitely long. I am thinking about having the limits of integration to be ## \theta_1 = 0 ## and ## \theta_2 = \frac {\pi} {2} ##

Many thanks!