Ballentine Problem 7.1 Orbital Angular Momentum

Click For Summary

Homework Help Overview

The discussion revolves around finding the probability distributions of the orbital angular momentum variables \(L^{2}\) and \(L_{z}\) for specific orbital state functions involving spherical harmonics. Participants explore the relationship between the wavefunctions and their corresponding angular momentum eigenstates.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss how to express the wavefunctions in terms of spherical harmonics and the implications for calculating probability distributions. There are questions about normalizing the wavefunctions and the correct interpretation of the results.

Discussion Status

Some participants have provided guidance on the normalization of spherical harmonics and the correct formulation of the wavefunctions. There is an ongoing exploration of the calculations and interpretations of the results, with some participants expressing uncertainty about their conclusions.

Contextual Notes

Participants mention the need to account for normalization factors and the correct use of spherical harmonics in their calculations. There is also a recognition of potential errors in earlier assumptions or calculations regarding the wavefunctions.

Irishdoug
Messages
102
Reaction score
16
Homework Statement
Find the probability distributions of the orbital angular momentum variables ##L^{2}## and ##L_{z}## for the following orbital state functions:
Relevant Equations
##\Psi(x) = f(r) sin(\theta) cos(\theta)##



##\Psi(x) = f(r) cos^{2}(\theta)##
Find the probability distributions of the orbital angular momentum variables ##L^{2}## and ##L_{z}## for the following orbital state functions:
##\Psi(x) = f(r) sin(\theta) cos(\theta)##

##\Psi(x) = f(r) cos^{2}(\theta)##I am aware that the prob. distribution of an observable is ##|<a_{n} | \Psi >|^{2}## were ##a_{n}## are the eigenstates.

I'm at a loss of how to even start the question however. I'm unsure as to how to find l and m to, for example, use the spherical harmonics. Can someone point me in the right direction? Thankyou.
 
Physics news on Phys.org
Irishdoug said:
I'm at a loss of how to even start the question however. I'm unsure as to how to find l and m to, for example, use the spherical harmonics. Can someone point me in the right direction? Thankyou.
What do you know about the spherical harmonics? That is the right direction.
 
Thankyou for your response.

I figured I had to work backwards somewhat to write ##´|\Psi> = \frac{1}{2} (\frac{3}{8\pi})^{\frac{1}{2}} (Y_{1}^{-1} - Y_{1}^{1})##

Now, when I do ##|<l,m|\Psi>|^{2} = |<1,1|\Psi>|^{2} and |<1,-1|\Psi>|^{2} ## I get 0 for both. I am doing the integral
\begin{gather*}
\iint (1) sin(\theta) cos(\theta) \,d\theta\,d\phi

\end{gather*}

with 0 - 2 ##\pi## and 0 - ##\pi## as the arguments. It being 0 does not make sense. I am unsure as to what I have done wrong. Any help appreciated.
 
Irishdoug said:
I figured I had to work backwards somewhat to write ##´|\Psi> = \frac{1}{2} (\frac{3}{8\pi})^{\frac{1}{2}} (Y_{1}^{-1} - Y_{1}^{1})##
If that is correct, then that is all you need, surely. I don't know what the next calculation is supposed to be.
 
It is the probability distribution.
 
Irishdoug said:
It is the probability distribution.
It's the wavefunction expressed as a linear combination of the relevant eigenfunctions. You should know how to get the probabilities from that.
 
  • Like
Likes   Reactions: Irishdoug
Irishdoug said:
Thankyou for your response.

I figured I had to work backwards somewhat to write ##´|\Psi> = \frac{1}{2} (\frac{3}{8\pi})^{\frac{1}{2}} (Y_{1}^{-1} - Y_{1}^{1})##
Although you also have to be careful about your normalisation.
 
  • Like
Likes   Reactions: Irishdoug
Hi, I went back and read Griffiths . I realized I left out the the ##r^{2}dr## and we can normalise separately, and that I wasn't seeing them as a liner combination like you stated. I've normalised properly now too.

So I get ##\frac{1}{2} (\frac{8\pi}{3})^{\frac{1}{2}}(2) + \frac{1}{2} (\frac{8\pi}{3})^{\frac{1}{2}}(2)## = 0.69. Squared this give a half which I think should be correct.
 
Irishdoug said:
Hi, I went back and read Griffiths . I realized I left out the the ##r^{2}dr## and we can normalise separately, and that I wasn't seeing them as a liner combination like you stated. I've normalised properly now too.

So I get ##\frac{1}{2} (\frac{8\pi}{3})^{\frac{1}{2}}(2) + \frac{1}{2} (\frac{8\pi}{3})^{\frac{1}{2}}(2)## = 0.69. Squared this give a half which I think should be correct.
What do ##0.69## and ##0.5## mean in the context of answering the question?
 
  • #10
0.69 is the probability amplitude for the ##L^{2}## and ##L_{z}## operators and 0.5 is the probability that the eigenvalues of ##L_{z}## is = ## m\hbar = \hbar ## and ## L^{2} = 2\hbar^{2} ## when measured as m = 1 and l =1

But I am not certain this is the correct answer.

I also assume when I take l=1 and m=-1 I will get half as well and as such I obtain an overall probability of 1 as required.
 
Last edited:
  • #11
Irishdoug said:
0.69 is the probability amplitude for the ##L^{2}## and ##L_{z}## operators and 0.5 is the probability that the eigenvalues m and l are 1 and 1 respectively when measured.

But I am not certain this is the correct answer.
Operators don't have probability amplitudes. States or functions have probability amplitudes.

I think you need to be able to express precisely what the question is asking for, and what you are calculating.
 
  • #12
Apologies, see updated answer. I didn't express what I meant at all correctly. It is also not formatting when I post, but looks correct when I preview.

So 0.69 is the probability amplitude of the state ##Y_{1}^{1}## and ##Y_{1}^{-1}##
 
  • #13
Irishdoug said:
Thankyou for your response.

I figured I had to work backwards somewhat to write ##´|\Psi> = \frac{1}{2} (\frac{3}{8\pi})^{\frac{1}{2}} (Y_{1}^{-1} - Y_{1}^{1})##
How did you get that expression for the wave-function?
 
  • #14
from the spherical harmonics. So the state I need is ##|\Psi(x)> = f(r)sin(\theta)cos(\phi)##

the spherical harmonic for l=1 and m=1 ; l=1 and m=-1 is ##\frac{+}{-}(\frac{3}{8\pi})^{0.5}sin(\theta)exp(\frac{+}{-}i\phi)##

So doing ##Y_{1}^{-1} - Y_{1}^{1}\frac{1}{2}## gives ##sin(\theta)cos(\phi)##
 
Last edited:
  • #15
Irishdoug said:
from the spherical harmonics. So the state I need is ##|\Psi(x)> = f(r)sin(\theta)cos(\theta)##

the spherical harmonic for l=1 and m=1 ; l=1 and m=-1 is ##\frac{+}{-}(\frac{3}{8\pi})^{0.5}sin(\theta)exp(\frac{+}{-}i\phi)##

So doing ##Y_{1}^{-1} - Y_{1}^{1}\frac{1}{2}## gives ##sin(\theta)cos(\theta)##
You might want to double-check that!
 
  • #16
##(Y_{1}^{-1} - Y_{1}^{1})\frac{1}{2}## gives ##sin(\theta)cos(\theta)##

??
 
  • #17
Irishdoug said:
##(Y_{1}^{-1} - Y_{1}^{1})\frac{1}{2}## gives ##sin(\theta)cos(\theta)##

??
Definitely not! ##sin \theta \cos \phi## maybe.
 
  • #18
PeroK said:
Definitely not! ##sin \theta \cos \phi## maybe.
Yes yes sorry! the cos should be ##\phi## not ##\theta##. I have written it wrong here throughout!
 
  • #19
Was I correct when I said this:

So 0.69 is the probability amplitude of the state ##Y_{1}^{1}## and ##Y_{1}^{-1}##and 0.5 is the probability that the eigenvalues of ##L_{z}## is = ## m\hbar = \hbar ## and ## L^{2} = 2\hbar^{2} ## when measured as m = 1 and l =1

I feel it is, but I would like confirmation if I am or am not.
 
  • #20
Irishdoug said:
Yes yes sorry! the cos should be ##\phi## not ##\theta##. I have written it wrong here throughout!
That explains it!

Back to the question. You have equal weight of the ##l = 1, m = 1## and ##l=1, m = -1## states. I would say that means you will definitely get ##l = 1##, i.e. ##L^2 = 2\hbar^2## and get ##m = \pm 1##, i.e. ##L_z = \pm \hbar## with equal probability of ##0.5##.

You don't have to do any calculations.

But, you shouldn't have the factor of ##\frac 3 {8\pi}##, as that factor is part of the normalised spherical harmonic. You should have simply: $$\Psi = \frac 1 {\sqrt 2} (Y_1^{-1} - Y_1^1)$$
 
  • Like
Likes   Reactions: Irishdoug
  • #21
haha yes apologies for that!

Ok great, it is quite clear to me now. Thankyou for your help and patience! It is must appreciated.
 
  • Like
Likes   Reactions: PeroK
  • #22
Remember that spherical harmonics are already normalised individually, so to normalise a sum of, say, 2 spherical harmonics you divide by sqrt2, etc. So if you see any really weird factors in front something is probably wrong. These exercises get very easy once you get the hang of them!
 
  • Like
Likes   Reactions: Irishdoug

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
6
Views
4K
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 22 ·
Replies
22
Views
8K