# Basic Calculus - That's all one needs for engineering?

1. Jul 13, 2011

### Femme_physics

For my practical engineering degree in mechatronics, we only studied really basic calculus. How to take derivatives and intergals of simple functions. I'm curious, is "basic calculus", which is like 1/5 of calculus I I guess, all you really need for engineering?

*We were told there won't be any more math courses.

What really bugs me is that you guys kept telling me that I can't really understand mechanics without calculus and yet we finished the course WITHOUT using calculus in our mechanics problems (statics and dynamics of rigid bodies)

2. Jul 13, 2011

### bcrowell

Staff Emeritus
Depends completely on exactly what you're doing in engineering. Some engineers may go 20 years without doing a derivative or an integral. Others may use calculus intensively every day of their lives. Regardless of whether you're actually using it to do calculations, it becomes part of your conceptual toolkit, and you need it to communicate with other engineers.

People who learned physics with calculus may have a hard time imagining how to do it without. I spend 2/3 of my professional life teaching physics to biology majors who don't know calculus, and I assure you, it can be done. Not knowing calculus just makes certain easy things hard and certain hard things impossible.

3. Jul 13, 2011

### kjohnson

For undergrad I didn't use much more than basic calculus. We did use differential equations from time to time (though often the solution was simply given), as well as work with matrices. I would say the breakdown was something along the lines of:

Linear Algebra - 20%
Differential Equations & Calc - %30

Yes, you do need to understand calculus to understand mechanics and many other problems you will encounter. For example what if acceleration is not constant..even that is a basic calculus problem.

4. Jul 13, 2011

### Angry Citizen

What on earth? My engineering program requires ODE's and PDE's. I can't imagine why anyone would educate an engineer sans differential equations.

5. Jul 13, 2011

### Dickfore

If you have a signal processing course in your area, you must be familiar with Fourier series, transfortms and the Dirac delta function. Are you familiar with these concepts? Because they are not "Basic Calculus".

6. Jul 13, 2011

### Pyrrhus

It depends. Statics is mainly linear algebra. You solve most of the problems based on your static equilibrium conditions. Now, Dynamic requires Vectorial Calculus for a full treatment. I cannot imagine doing Dynamics without vectorial calculus, or much less even basic calculus. In fact, classical problems in dynamics on the vibrations sections are based on ODEs.

Here's a problem from my undergraduate studies when I was an undergraduate engineering student.

Can you solve it without calculus?

7. Jul 13, 2011

### chiro

Chances are you will either need to cover more math, or apply the existing math you have learned in prior classes.

Signal processing? You will need statistics, and things like integral transforms. Telecommunications? Information theory and some high level statistics. Fluid mechanics? Tensor analysis.

You may have to learn new math on the fly depending on exactly what you are doing.

8. Jul 13, 2011

### MissSilvy

Oh really? I think our physics degrees are being a little lax when they only require calculus 1-3, differential equations, and linear algebra. You can probably get BY with only a little calculus, but I can almost guarantee you that more math in general can only benefit you. But like other posters said, a lot of the math is taught within the class you need it in.

9. Jul 13, 2011

### phinds

In studying Electrical Engineering 40+ years ago, I took Fourier Analysis, Laplace Transforms, Differential Equations (all of which were electives) in addition to Calculus and Analytic Geometry. In the 40+ years since, I have never used a jot of any of it, BUT ... Ben's point that "you need it to communicate with other engineers" is an excellent one, and had I known at the time what I know now about not actually using it, I would STILL have taken it. First because it was fun but more importantly because the CONCEPTS are useful in many areas of science even if you don't use the math day to day.

Even in EE, I used the concepts even when not using the math. For example, I would have had a very hard time, I think, understanding signal issues in digital electronics (I designed computers) if I had not had Fourier Analysis.