- #1

- 56

- 0

If f(x) has a period of 2*pi and |f(x)-f(y)| <= c*|x-y|^a where a and c are positive constants, why are are n-th Fourier coefficients <= c*(pi/n)^a ?

Help or hints would be appreciated.

Help or hints would be appreciated.

Last edited:

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter neginf
- Start date

- #1

- 56

- 0

Help or hints would be appreciated.

Last edited:

- #2

jasonRF

Science Advisor

Gold Member

- 1,489

- 551

I made a stab at this, but ended up with a slightly looser bound. But perhaps it will still be of some use. Here I just do the "sine" coeffs; the argument for cos is essentially the same.

[tex]

\left| b_n \right| \leq \frac{1}{\pi} \int_0^{2 \pi}\,dx\,|f(x)| |sin(nx)|=\frac{1}{\pi}\sum_{m=1}^{n} \int_{(m-1)2\pi/n}^{m2\pi/n}\,dx\,|f(x)|\,|sin(nx)|

=\frac{1}{\pi}\sum_{m=1}^{n} \int_{(m-1)2\pi/n}^{(m-1/2)2\pi/n}\,dx\,|f(x)|\,sin(nx) - \int_{(m-1/2)2\pi/n}^{m2\pi/n}\,dx\,|f(x)|\,sin(nx).

[/tex]

Now if [itex] |f(x_m^{-})|[/itex] is an upper bound of [itex]|f|[/itex] on [itex] [(m-1)2\pi/n, (m-1/2)2\pi/n][/itex], and [itex]|f(x_m^{+})|[/itex] is an upper bound of [itex]|f|[/itex] on [itex] [(m-1/2)2\pi/n, m2\pi/n][/itex], then

[tex]

\int_{(m-1)2\pi/n}^{(m-1/2)2\pi/n}\,dx\,|f(x)|\,sin(nx)

\leq |f(x_m^{-})| \int_{(m-1)2\pi/n}^{(m-1/2)2\pi/n}\,dx \, sin(nx)

= \frac{2}{n} |f(x_m^{-})|,

[/tex]

and similarly for the other integral. Hence I get

[tex]

|b_n| \leq \frac{2}{n\pi} \sum_{m=1}^{n} |f(x_m^{-})|-|f(x_m^{+})|

\leq

\frac{2}{n\pi} \sum_{m=1}^{n} |f(x_m^{-})-f(x_m^{+})|

\leq

\frac{2}{n\pi} \sum_{m=1}^{n} c |x_m^{-}-x_m^{+}|^a.

[/tex]

Now, from the way I defined [itex]x_m^{-}[/itex] and [itex]x_m^{-}[/itex], it must be true that [itex]|x_m^{-}-x_m^{+}| \leq 2\pi/n[/itex]. So I get

[tex]

|b_n| \leq \frac{2c}{n\pi}\sum_{m=1}^{n} \left( \frac{2\pi}{n}\right)^a

= \frac{2c}{\pi}\left( \frac{2\pi}{n}\right)^a

\leq c \left( \frac{2\pi}{n}\right)^a.

[/tex]

So I have an extra [itex]2^a[/itex]. Perhaps you can see a better way!

cheers,

jason

[tex]

\left| b_n \right| \leq \frac{1}{\pi} \int_0^{2 \pi}\,dx\,|f(x)| |sin(nx)|=\frac{1}{\pi}\sum_{m=1}^{n} \int_{(m-1)2\pi/n}^{m2\pi/n}\,dx\,|f(x)|\,|sin(nx)|

=\frac{1}{\pi}\sum_{m=1}^{n} \int_{(m-1)2\pi/n}^{(m-1/2)2\pi/n}\,dx\,|f(x)|\,sin(nx) - \int_{(m-1/2)2\pi/n}^{m2\pi/n}\,dx\,|f(x)|\,sin(nx).

[/tex]

Now if [itex] |f(x_m^{-})|[/itex] is an upper bound of [itex]|f|[/itex] on [itex] [(m-1)2\pi/n, (m-1/2)2\pi/n][/itex], and [itex]|f(x_m^{+})|[/itex] is an upper bound of [itex]|f|[/itex] on [itex] [(m-1/2)2\pi/n, m2\pi/n][/itex], then

[tex]

\int_{(m-1)2\pi/n}^{(m-1/2)2\pi/n}\,dx\,|f(x)|\,sin(nx)

\leq |f(x_m^{-})| \int_{(m-1)2\pi/n}^{(m-1/2)2\pi/n}\,dx \, sin(nx)

= \frac{2}{n} |f(x_m^{-})|,

[/tex]

and similarly for the other integral. Hence I get

[tex]

|b_n| \leq \frac{2}{n\pi} \sum_{m=1}^{n} |f(x_m^{-})|-|f(x_m^{+})|

\leq

\frac{2}{n\pi} \sum_{m=1}^{n} |f(x_m^{-})-f(x_m^{+})|

\leq

\frac{2}{n\pi} \sum_{m=1}^{n} c |x_m^{-}-x_m^{+}|^a.

[/tex]

Now, from the way I defined [itex]x_m^{-}[/itex] and [itex]x_m^{-}[/itex], it must be true that [itex]|x_m^{-}-x_m^{+}| \leq 2\pi/n[/itex]. So I get

[tex]

|b_n| \leq \frac{2c}{n\pi}\sum_{m=1}^{n} \left( \frac{2\pi}{n}\right)^a

= \frac{2c}{\pi}\left( \frac{2\pi}{n}\right)^a

\leq c \left( \frac{2\pi}{n}\right)^a.

[/tex]

So I have an extra [itex]2^a[/itex]. Perhaps you can see a better way!

cheers,

jason

Last edited:

Share: