MHB Basic Question on Modules - Dummit and Foote Chapter 10

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote Chapter 10: Introduction to Module Theory.

After defining modules and giving some examples, D&F state the following:

"We emphasize that an abelian group M may have many different R-module structures even if the ring R does not vary ... ... "

I am puzzled by this statement ... surely if the abelian group M and the ring R is given, there is only one module being defined ...

Obviously I am wrong in this thought, but can someone please explain why I am wrong ...

Peter

EDIT * presumably the answer has something to do with the operation of the action involved ... but what exactly ...hopefully someone has an example that makes the whole thing clear ...
 
Physics news on Phys.org
Think of the ring action as a ring-homomorphism $R \to \text{End}_{\Bbb Z}(M)$.

There is no reason to suppose this homomorphism is injective.

Recall that any $R/I$-module has a natural interpretation as an $R$-module.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top