MHB Basic symbology for involving a series but without summation necessarily

  • Thread starter Thread starter GP72
  • Start date Start date
  • Tags Tags
    Series Summation
Click For Summary
The discussion focuses on finding a symbol for a vector of observations that avoids implying multiplication or summation, specifically for expressing inequalities among means of genotypes. The user seeks clarification on whether the symbol Pi is appropriate for this purpose. There is a suggestion that the notation could be represented as a series of inequalities between different genotype means. Additionally, guidance is provided on how to format mathematical expressions using LaTeX. The conversation emphasizes the need for clarity in representing statistical relationships without ambiguity.
GP72
Messages
1
Reaction score
0
Hi. I'm sorry to bother you, but I was trying to find the symbol used for a vector of observations that doesn't implicitly infre multiplication or summation. I'm trying to express an inequality at the simple and general levels so that

\muAa \ne \muAA, \muaa

The idea is that this inequality should apply to means for factors (genotypes) at a single effect (a gene in this case), and more generally to the system of all means for all factors at all effects. Is that Pi that I should be using? I can't remember and can't find it.
 
Mathematics news on Phys.org
I don't quite understand you. Are you simply trying to say that one vector of observations does not equal another?
In that case, it would be $$(\mu_{Aa_1},\mu_{Aa_2},\mu_{Aa_3}...) \neq (\mu_{AA_1}...) \neq ...$$
Can you elaborate a little more on what you need?
Also, to type $\LaTeX$, use \$ and \$$ symbols or $$[\MATH] tags.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
10K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K