dyn said:
In an inertial frame looking down on the rotating wire and bead there is no centrifugal force yet the bead still accelerates outwards ?
Let's describe the bead on the wire rotating in the ##xy## plane by
$$\vec{r}=\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos (\omega t) \\ r \sin(\omega t) \end{pmatrix}.$$
Here ##r=r(t)## is the unknown function we want to solve for. To get the equations of motion we use Hamilton's principle of least action. The Lagrangian is
$$L=\frac{m}{2} \dot{\vec{x}}^2.$$
So we need
$$\dot{\vec{r}}=\begin{pmatrix} \dot{r} \cos(\omega t) -r \omega \sin(\omega t) \\ \dot{r} \sin(\omega t) + r \omega \cos(\omega t) \end{pmatrix}.$$
After some algebra you get
$$L=\frac{m}{2} (\dot{r}^2 + r^2 \omega^2).$$
The equation of motion is given by the Euler-Lagrange equation,
$$\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial L}{\partial \dot{r}}=m \ddot{r} = \frac{\partial L}{\partial r} = m \omega^2 r.$$
The variable ##r## is obviously with respect to the reference frame rotating wrt. the inertial frames, and thus we have a centrifugal force (the right-hand side of the equation) when we describe it in this rotating frame. The solution is
$$r(t)=r_0 \cosh(\omega t) + \frac{v_0}{\omega} \sinh(\omega t),$$
where ##r_0## and ##v_0## are the initial position and velocity along the wire as measured in the rotating reference frame.
The acceleration as observed in the inertial frame thus is
$$\ddot{\vec{r}} = \begin{pmatrix} (\ddot{r}-r \omega^2) \cos(\omega t) -2 \dot{r} \omega \sin(\omega t) \\ (\ddot{r}-r \omega^2) \sin(\omega t) + 2 \dot{r} \omega \cos(\omega t) \end{pmatrix}.$$
Using the equation of motion for ##r(t)## this simplifies to
$$\ddot{\vec{r}}=2 \omega \dot{r} \begin{pmatrix} -\sin(\omega t) \\ \cos(\omega t) \end{pmatrix}.$$
So we have only an acceleration perpendicular to the wire as it must be, because there's no force in direction of the wire, because we assumed no friction. The force on the bead is the coercive force of the wire which is perpendicular to the wire. The opposite force on the wire as seen from the rotating frame is the corresponding Coriolis force.