Graduate Bell inequalities demonstration

Click For Summary
The correlation function C(x y) is defined in the context of Bell inequalities, with the relationship −1 ≤ C(x y) ≤ 1 derived from the principles of probability theory. This relationship stems from the positivity of probabilities, ensuring that P(+ + |x y), P(− − |x y), P(+ − |x y), and P(− + |x y) are all non-negative. Additionally, the normalization condition requires that the sum of these probabilities equals one. These fundamental properties of probability lead to the established bounds for the correlation function. Understanding this relationship is crucial for exploring the implications of Bell's theorem in quantum mechanics.
microsansfil
Messages
325
Reaction score
43
TL;DR
I try to understand why the correlator boundaries is −1 ≤ C(x y) ≤ 1
Hello,

In this thesis https://tel.archives-ouvertes.fr/tel-01743877/document at "1.2.2 Bell inequalities" page 7-8 it's define a correlation function :

C(x y) = P(+ + |x y) + P(− − |x y) − P(+ − |x y) − P(− + |x y), with −1 ≤ C(x y) ≤ 1.

How do one get to this relationship −1 ≤ C(x y) ≤ 1 ?

Thanks
Patrick
 
Physics news on Phys.org
microsansfil said:
Summary:: I try to understand why the correlator boundaries is −1 ≤ C(x y) ≤ 1

Hello,

In this thesis https://tel.archives-ouvertes.fr/tel-01743877/document at "1.2.2 Bell inequalities" page 7-8 it's define a correlation function :

C(x y) = P(+ + |x y) + P(− − |x y) − P(+ − |x y) − P(− + |x y), with −1 ≤ C(x y) ≤ 1.

How do one get to this relationship −1 ≤ C(x y) ≤ 1 ?

Thanks
Patrick
It's just a consequence of positivity $$P(\pm \pm' | xy) \geq 0$$ and normalisation $$P(++|xy) + P(+-|xy) + P(-+|xy) + P(--|xy) = 1$$ of the probabilities.
 
  • Like
Likes microsansfil and vanhees71
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 80 ·
3
Replies
80
Views
7K
  • · Replies 151 ·
6
Replies
151
Views
12K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 58 ·
2
Replies
58
Views
5K
  • · Replies 33 ·
2
Replies
33
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 199 ·
7
Replies
199
Views
15K