Vanesch said:
Vanesch, congrats with your scientific attitude.
I third that. Vanesch, thank you for taking the defense of my position while I was away. Your eloquent comments precisely characterize my views as well on why it is worth investigating local realistic theories such as SED.
Zapperz said:
No SED theory has ever been attempted to match the results of ARPES, RPES, even multiphoton photoemission processes. In this day and age, photoelectric effect is chicken feed.
SED has not yet been successful in this regime. However, there is currently ongoing work by Dan Cole, who's paper Vanesch cited. The three papers on detectors I cited by Santos do also discuss this problem, if you care to read them. I also have specific ideas along these lines, which I won't discuss.
However, there is an important point to consider about SED and local realist theories in general. If SED is correct, then the physical description of atomic physical processes will also be much more detailed and complex than will the standard quantum mechanical treatment. In fact, the actual physics of SED is very nonlinear, when modeled precisely and accurately. But this is very difficult to do because of the nonlinearity in the theory. In fact, because analytical analyses alone of nonlinear systems is not very reliable, SED theorists are taking advantage of numerical simulations of atomic physical processes described by SED; and lo and behold, these numerical simulations are beginning to show that SED works where it was once thought to fail, such as in generating the probability density distribution for the position of an electron in the ground state of the hydrogen atom. The techniques of SED are also becoming extremely useful in analysis of Casimir and van der waals forces in various boundary conditions:
http://www.bu.edu/simulation/publications/dcole/PDF/DCColeBUPresentationApril162003.pdf
Now you might say that that's why QM is a better theory, because it gives a
correct first-order description of atomic spectra and photoemission processes, whereas SED has to resort to a nonlinear description of light-atom interactions. However, a nonlinear description is what would be expected from a more fundamental and accurate
stochastic local realist description of atomic physics. In fact, one could have said the same about Newtonian gravity versus general relativity when it was being developed. You could have argued, what is the use of a nonlinear field equation to describe, say, the motion of a test particle in a gravitation potential, when we already have a perfectly linear theory (Newtonian gravity) that does this just fine? Of course the claim was that GR would be the more fundamental and accurate description of gravity, to which Newtonian gravity is only a very good approximation; and given this to be the claim, then there would eventually be new or different predictions that GR would make against Newtonian gravity. And indeed there were.
Likewise, the same claim would be made about SED, that it gives a more accurate description of atomic-optical physics to which standard QM is an excellent mathematical approximation. Therefore, SED will make new predictions that standard QM does not. And of course we know this is true! But such tests have yet to be carried out. So, I would say give it time.
Vanesch said:
Don't get me wrong, I don't think that any amount of funding can make a totally ill founded theory work as well as QM. But maybe SED would have had an equally successful development if it would have received as much attention. So I think it is not totally fair to ask of SED to give you the same level of actuality and sophistication as QM has today, given the hugely different amounts of means that were invested in both paths.
Indeed this is partly true. Theoretical QM research received several orders of magnitude more man power, grant money, and time than has SED (BTW, I think this is the same reason that Bohmian mechanics has yet to be made fully relativistic). However, another significant reason for the limited scope of SED, is the fact that the necessary mathematical and computational tools to accurately analyze the nonlinear partial differential equations of SED for nonlinear systems were only developed in the 80's when many researchers in the field had already become pessimistic about the theory. There is a very nice review article of the history of SED that can be found here:
http://www.bu.edu/simulation/publications/dcole/PDF/SwedenCole2005.pdf
Vanesch said:
After all, QM also faces its gorilla: gravity (with which SED has no problems for instance).
EDIT:
the chicken-feed list:
-photo-electric "lumpiness"
-black body radiation
-stability and spectrum of hydrogen
-gyromagnetic ratio for electrons up to order 6 in alpha
- Lamb shift
- Bell experiments with PDC xtals
Now, ask your average student a list of results which were the historical motivations which made people finally accept quantum theory? This is what I find intriguing.
EDIT2: personally, I find this exploration more "cost-effective" than pondering for 30 years about how to tie up my shoes in 11 dimensions.
These are excellent points. Just to add to the SED chicken feed list, the Casimir effect, Unruh-Davies radiation, and Aharonov-Bohm effect. And the SED description of the AB-effect also has an experimentally distinguishable prediction:
"The Paradoxical Forces for the Classical Electromagnetic Lag Associated with the Aharonov-Bohm Phase Shift". Timothy H. Boyer.
http://arxiv.org/abs/physics/0506180
Vanesch said:
In fact, I fight every dogmatic religious attitude with religious conviction In the same way as I would argue against a religious Local Realist, I argue against a Religious Bohmian, or a Religious quantum theorist.
Same here. In fact, I have a currently running debate with Sheldon Goldstein about the problems with the physical interpretation of the wave function in BM, as well as one with Trevor Marshall on conservation of energy issues in SED.
Vanesch said:
My point is simply that the simplicity of this SED model and the accuracy of its predictions (true, within a very restricted domain for the moment) is intriguing, and that we might learn something if only we understood why. I have a hard time believing that it is pure coincidence that quantum theory and SED models give so close results, with so different postulates. So the point is not so much SED versus QM, but how come that SED and QM give same predictions.
Exactly. From a philosophy of science perspective, if we understand what functional aspect of the mathematical structure and physical ontology of these different theories gives them much of the same predictive power, that would also be of considerable value to the scientific methodology of physics. There are many alternative formulations of physics, such as Brans-Dicke theory, which Vanesch also mentioned, or Bohmian mechanics, Everett's MWI, GRW spontaneous collapse, or even SED, which all have vastly different ontologies, but which are still empirically very close. As a consequence, it is very difficult as a theorist, to know which ontological interpretation is closer to the objective truth. Developing a rigorous means by which to help make this judgement would be of value for any theorist, and especially those who work on competing theories which are very far from being experimentally testable, i.e. string theory, loop quantum gravity, Hawking's quantum cosmology, even semiclassical gravity!.
Vanesch said:
One should not religiously commit to a single theory, and view competitors as personal rivals. Competitive theories are the backbone of scientific inquiry.
Yes! In fact, these arguments about how local realistic challenges to the standard formalism of QM can give us deeper insights into it, has already been proven in my opinion. Einstein's critical mind allowed him to see more deeply into the foundations of quantum mechanics than many of its most ardent defenders. And the kind of philosophically motivated critical questions he asked but could not yet answer were to bear fruit barely 10 years after his death when they were taken up again by another progressive critic of standard QM - John Bell.
DrChinese said:
It seems strange to see people constructing theories that say "Nature is LR but Experiments will always say QM" in the presence of Bell's Theorem.
Indeed that would seem strange to "see people constructing theories that say "Nature is LR but Experiments will always say QM" in the presence of Bell's Theorem." Santos and Marshall are not saying this however. They are saying that "Nature is LR and experiments are consistent with this."
DrChinese said:
In my opinion, for SED to be a viable local realistic alternative to QM: it MUST make a prediction for entangled photon spin correlation that is at odds with Malus' Law (cos^2). I mean, that's ultimately the point of the 87% efficiency threshold that Santos claimed must be surpassed to distinguish (i.e. that there is a difference in the predictions which is being masked due to experimental loopholes). I just do not see how that makes any sense, because to assert that is essentially to say that Malus' Law is wrong too. And I consider that to be pretty fundamental.
I thought you said you were very familiar with Santos and Marshall's work? Marshall and Santos showed a long time ago that stochastic noise does in fact modify Malus Law, in such a way that is still consistent with observation. Please read the abstract of this paper:
Stochastic optics: A local realistic analysis of optical tests of Bell inequalities
http://prola.aps.org/abstract/PRA/v39/i12/p6271_1
DrChinese said:
If we need to have a separate thread about the pros and cons of Santos and Marshall's work, then I would be happy to participate. However, I don't want to mislead anyone into thinking I am an expert on it. Nor should anyone think that I am denying that they are respected scientists. However, SED is less mainstream than Bohmian Mechanics, which is itself not mainstream. Given the nature of this forum, I think that is relevant.
I would be willing to participate in such a separate thread. However, SED not being mainstream has not deteriorated the quality of the arguments or discussion in this thread. Moreover, SED is solid, peer-reviewed work, just as is Bohmian mechanics.
DrChinese said:
2. Parametric Down Conversion produces entangled photon pairs. With the evidence, how could you not believe this... unless, of course, you deny the existence of entanglement a priori. The only problem is that clearly, you can measure the difference between groups of entangled photon pairs vs. pairs in which there is no entanglement. (And there are many different ways to entangle particles.) So the question is really: what do YOU call the photon pairs produced by PDC?
DrChinese, you apparently are not very familiar with Marshall and Santos' work. They and others have accounted for PDC entanglement of photons within the stochastic optical formalism:
"What is entanglement?" Emilio Santos.
I conjecture that only those states of light whose Wigner function is positive are real states, and give arguments suggesting that this is not a serious restriction. Hence it follows that the Wigner formalism in quantum optics is capable of interpretation as a classical wave field with the addition of a zeropoint contribution. Thus entanglement between pairs of photons with a common origin occurs because the two light signals have amplitudes and phases, both below and above the zeropoint intensity level, which are correlated with each other.
http://arxiv.org/abs/quant-ph/0204020
A Local Hidden Variables Model for Experiments involving Photon Pairs Produced in Parametric Down Conversion: Alberto Casado, Trevor Marshall, Ramon Risco-Delgado, Emilio Santos.
http://arxiv.org/abs/quant-ph/0202097
A. Casado, T. W. Marshall, and E. Santos, J. Opt. Soc. Am. B, 14,
494-502 (1997).
A. Casado, A. Fern´andez-Rueda, T. W. Marshall, R. Risco-Delgado,
and E. Santos, Phys. Rev. A 55, 3879-3890 (1997).
A. Casado, A. Fern´andez-Rueda, T. W. Marshall, R. Risco-Delgado,
and E. Santos, Phys. Rev. A 56, 2477-2480 (1997).
A. Casado, T. W. Marshall, and E. Santos, J. Opt. Soc. Am. B 15,
1572-1577 (1998).
A. Casado, A. Fern´andez-Rueda, T. W. Marshall, J. Mart´inez, R. Risco-Delgado, and E. Santos, Eur. Phys. J. D 11, 465 (2000).
A. Casado, T.W. Marshall, R. Risco-Delgado, and E. Santos, Eur. Phys. J. D 13, 109 (2001).
DrChinese said:
I do not believe there is a deeper level of reality than the HUP implies. Therefore, I do not believe there is definite real value for observables outside the context of a measurement. I consider this an orthodox view, hardly in need of further description.
That I would have to sharply disagree with. Bohmian mechanics proves the opposite of what you believe regarding the HUP or that observables don't have a definite real value before measurement.
Regards,
Maaneli