- 32,814
- 4,726
There is something highly unethical to talk about detection loopholes or detector efficiency while ignoring some very fundamental aspects and responses to such things.
Unlike most of you, *I* have been involved in actual measurement of such things since the start of my graduate school years, and since about 1 1/2 years ago, have been making high QE photocathodes. So I can talk about background noise, dark current, detector signal, blah blah blah till everyone turns blue. Trying to distinguish between what is "noise" and what is "signal" is a HUGE part of my work. If you look at the raw data from photoemission spectroscopy, for example (i.e. if you make cuts in the data in my avatar), you will see background noise, detector noise, dark currents, etc... Yet, according to SED (and Santos), the these "random" background noise can somehow mimic "actual signal"! NO KIDDING!
How convenient can that be when you can simply stick something in ad hoc, and voila, you can mimic the actual signal simply by burying something in the detector noise. Or did we forget that SED comes with its own set of assumptions about the nature of such background fluctuations? And unlike QM, many of these "assumptions" have not even been tested at the most fundamental level to even see if they are consistent with observation.
Photodetector performance is such a crucial issue, and has been studied so extensively, it is not even funny. Yet, I have seen no actual study done to see how well the detector performance actually matches any of SED's assumption. If we can verify everything from Fowler-Nordheim law at finite temperatures to and the Richardson-Dushman relations for photocathodes, how come this void for SED remains? One would think this is one very fundamental aspect of verification of SED to be taken seriously. Or maybe it is because it is not falsifiable?
However, the most disturbing and unethical aspect of this discussion is the complete void of citation to the TONS of issues that have already been addressed regarding the detection efficiency. All I see are references given to various detection issues that somehow supports SED's point of view on the Bell-type experiments (while ignoring the more stringent CHSH-type experiments). Nowhere was there any mention, by the so-call experts or students in SED, papers such as by S. Massar et al[1] or A. Cabello[2] that have either formulated a Bell-type inequality that are insensitive to detector inefficiency, or that one can distinguish already between quantum optics prediction versus classical with just a detector at 69% efficiency (which we already have!). Or what about Tittel et al.[3] experiment that analyzed their data without subtracting any accidental coincidences (something that many have claimed would reveal "non-quantum" results)?
Where are the rebuttals from the SED camp to those papers? Check any of Santos or Marshall's published papers and citations to their papers that addressed many of the issues that they brought up. So how come they did not address any of these? And I only did a very quick search on a few papers that I am aware of. The rest of you who, I presumed, work in this field or very much interested in it, should have a truckload of literature that you are sitting on. So why were these types of papers that have addressed such detector issues WITHHELD from being listed here alongside those that were so quickly advertized?
There are more of these type of papers. This is why I find such omission here very disturbing. It somehow conveys that the issues brought up by SED are "unanswerable" and thus, must be true. If you omitted such on info on purpose, then shame on you. If you simply were ignorant of all of these large bodies of information, then what else have you missed that you SHOULD have known before pushing this thing onto us?
Zz.
[1]S. Massar et al. PRA 66, 052112 (2002).
[2] A. Cabello PRA 72, 050101 (2005).
[3] W. Tittle et al. PRL 81, 3563 (1998).
Unlike most of you, *I* have been involved in actual measurement of such things since the start of my graduate school years, and since about 1 1/2 years ago, have been making high QE photocathodes. So I can talk about background noise, dark current, detector signal, blah blah blah till everyone turns blue. Trying to distinguish between what is "noise" and what is "signal" is a HUGE part of my work. If you look at the raw data from photoemission spectroscopy, for example (i.e. if you make cuts in the data in my avatar), you will see background noise, detector noise, dark currents, etc... Yet, according to SED (and Santos), the these "random" background noise can somehow mimic "actual signal"! NO KIDDING!
How convenient can that be when you can simply stick something in ad hoc, and voila, you can mimic the actual signal simply by burying something in the detector noise. Or did we forget that SED comes with its own set of assumptions about the nature of such background fluctuations? And unlike QM, many of these "assumptions" have not even been tested at the most fundamental level to even see if they are consistent with observation.
Photodetector performance is such a crucial issue, and has been studied so extensively, it is not even funny. Yet, I have seen no actual study done to see how well the detector performance actually matches any of SED's assumption. If we can verify everything from Fowler-Nordheim law at finite temperatures to and the Richardson-Dushman relations for photocathodes, how come this void for SED remains? One would think this is one very fundamental aspect of verification of SED to be taken seriously. Or maybe it is because it is not falsifiable?
However, the most disturbing and unethical aspect of this discussion is the complete void of citation to the TONS of issues that have already been addressed regarding the detection efficiency. All I see are references given to various detection issues that somehow supports SED's point of view on the Bell-type experiments (while ignoring the more stringent CHSH-type experiments). Nowhere was there any mention, by the so-call experts or students in SED, papers such as by S. Massar et al[1] or A. Cabello[2] that have either formulated a Bell-type inequality that are insensitive to detector inefficiency, or that one can distinguish already between quantum optics prediction versus classical with just a detector at 69% efficiency (which we already have!). Or what about Tittel et al.[3] experiment that analyzed their data without subtracting any accidental coincidences (something that many have claimed would reveal "non-quantum" results)?
Where are the rebuttals from the SED camp to those papers? Check any of Santos or Marshall's published papers and citations to their papers that addressed many of the issues that they brought up. So how come they did not address any of these? And I only did a very quick search on a few papers that I am aware of. The rest of you who, I presumed, work in this field or very much interested in it, should have a truckload of literature that you are sitting on. So why were these types of papers that have addressed such detector issues WITHHELD from being listed here alongside those that were so quickly advertized?
There are more of these type of papers. This is why I find such omission here very disturbing. It somehow conveys that the issues brought up by SED are "unanswerable" and thus, must be true. If you omitted such on info on purpose, then shame on you. If you simply were ignorant of all of these large bodies of information, then what else have you missed that you SHOULD have known before pushing this thing onto us?
Zz.
[1]S. Massar et al. PRA 66, 052112 (2002).
[2] A. Cabello PRA 72, 050101 (2005).
[3] W. Tittle et al. PRL 81, 3563 (1998).
Last edited: