Bernoulli River: Calculating Water Speed

Click For Summary
SUMMARY

The discussion focuses on calculating the water speed of the Bernoulli River, formed by the confluence of River Pascal and River Archimedes, with respective volume flow rates of 4.8×105 L/s and 1.04×106 L/s. The cross-sectional area of the Bernoulli River is determined to be 3800 m2 (190 m wide and 20 m deep). The correct speed of the water in the Bernoulli River is calculated to be 0.4 m/s, derived from the equation of continuity, which states that the inflow equals the outflow (Qin = Qout).

PREREQUISITES
  • Understanding of fluid dynamics principles, specifically the equation of continuity.
  • Familiarity with Bernoulli's equation and its applications.
  • Basic algebra skills for manipulating equations and solving for variables.
  • Knowledge of calculating cross-sectional areas of geometric shapes.
NEXT STEPS
  • Study the equation of continuity in fluid dynamics.
  • Learn how to apply Bernoulli's equation in various fluid flow scenarios.
  • Explore the relationship between flow rate, cross-sectional area, and velocity in fluid systems.
  • Practice solving fluid dynamics problems involving multiple rivers or channels.
USEFUL FOR

Students studying fluid dynamics, engineers working on hydraulic systems, and anyone interested in understanding water flow calculations in rivers and channels.

Dilman Sidhu
Messages
3
Reaction score
0

Homework Statement

: River Pascal with a volume flow rate of 4.8×105L/s joins with River Archimedes, which carries 1.04×106L/s , to form the Bernoulli River. The Bernoulli River is 190 m wide and 20 m deep.[/B]

Homework Equations

:
What is the speed of the water in the Bernoulli River?
Express your answer using two significant figures.
Express answer in m/s.[/B]

The Attempt at a Solution


I have not yet attempted to write any answers b/c I'm unsure how to solve the equation. I believe I have to use Bernoulli's equation since that is a recent topic in class.[/B]
 
Physics news on Phys.org
Hello Dilman, :welcome:

Good of you to mention there is a b and a c part in this exercise. Maybe the a part is just a warming up ?
And you can safely assume the B river carries off the sum of the flows so there is no unpleasant accumulation at the confluence...
 
  • Like
Likes   Reactions: Dilman Sidhu
Thanks! I understood the speed of River B would have to include the values given for Rivers 1 and 2. I got an answer of 0.4 m/s which was correct but I was wondering if you could better explain the logic behind why the summation of the given values for Rivers 1 and 2 was divided by 3800 (190 m/s x 20 m/s = 3800).
 
I don't know what you are referring to, but I can easily guess that the division was not by 190 m/s x 20 m/s = 3800 m2/s2 !
Always, always check your dimensions !

Write out the detailed steps of the calculation -- with the dimensions and see that it all fits nicely. Post if you want comments.
 
Dilman Sidhu said:
Thanks! I understood the speed of River B would have to include the values given for Rivers 1 and 2. I got an answer of 0.4 m/s which was correct but I was wondering if you could better explain the logic behind why the summation of the given values for Rivers 1 and 2 was divided by 3800 (190 m/s x 20 m/s = 3800).
This is an application of the equation of continuity, not so much an application of the Bernoulli equation.

Here, the equation of continuity is "amount of water flowing into the river junction = the amount of water flowing out of the river junction"

In terms of algebra, Qin = Qout
and
Q = A ⋅ v, where
Q - flow in m3 / s
A - cross sectional area of the channel(s), m2
v - velocity of the flow, m/s

The area of the channel of River Bernoulli is A = 190 m × 20 m = 3800 m2

Units are included in calculations to help you make sense of the numbers. They are not intended to be a nuisance.
 
It is best practise to do the algebra on the symbols, substituting the numbers at the end.
The volume rate of flow Q is given by ##Q=vA## where A is the crossection area of the pipe (in this case the river) and v (perpendicular) is the speed of the flow.
You've already worked out that the flow rate for the Bournoulli river must be the sum of the flows for the other two so ##Q = Q_A+Q_P## ... if v is to be the speed of the Bournoulli river, then A must be its crossection - roughly width times depth: ##A=WD## (you could choose a different approximation for the shape of the river if you like.)

Now all the variables in the definition are in terms of stuff you know, you can substitute and use algebra to solve the resulting equation for v, using symbols only.
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 7 ·
Replies
7
Views
15K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K