MHB Bilinear Function and Gramian Matrix

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Function Matrix
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question which I am not sure whether my approach is correct. My understanding about Bilinear functions and Gramian matrix is limited, so this might be totally wrong. Hope you can provide some insight. :)

Question:

A bilinear function \(f:\Re^3\times \Re^3 \rightarrow \Re \) is given in standard basis \(\{e_1,\,e_2,\,e_3\}\) by the Gram matrix,

\[G_f=\begin{pmatrix}4&3&2\\1&3&5\\3&6&9 \end{pmatrix}\]

Find the left and a right kernel of \(f\).

My Solution:

I would find the left kernel of \(f\) using,

\[\left\{v\in\Re^3:\, \begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u_1\\u_2\\u_3 \end{pmatrix}=0\mbox{ for all } \begin{pmatrix} u_1 \\u_2 \\u_3 \end{pmatrix} \in \Re^3 \right\}\]

and the right kernel of \(f\) using,

\[\left\{u\in\Re^3:\, \begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u_1\\u_2\\u_3 \end{pmatrix}=0\mbox{ for all } \begin{pmatrix} v_1 &v_2 &v_3 \end{pmatrix} \in \Re^3 \right\}\]

Is this approach correct? Is this how the left and right kernels are given when the bilinear function is represented by the so called Gramian matrix? :)
 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

Here's a question which I am not sure whether my approach is correct. My understanding about Bilinear functions and Gramian matrix is limited, so this might be totally wrong. Hope you can provide some insight. :)

Question:

A bilinear function \(f:\Re^3\times \Re^3 \rightarrow \Re \) is given in standard basis \(\{e_1,\,e_2,\,e_3\}\) by the Gram matrix,

\[G_f=\begin{pmatrix}4&3&2\\1&3&5\\3&6&9 \end{pmatrix}\]

Find the left and a right kernel of \(f\).

My Solution:

I would find the left kernel of \(f\) using,

\[\left\{v\in\Re^3:\, \begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u_1\\u_2\\u_3 \end{pmatrix}=0\mbox{ for all } \begin{pmatrix} u_1 \\u_2 \\u_3 \end{pmatrix} \in \Re^3 \right\}\]

and the right kernel of \(f\) using,

\[\left\{u\in\Re^3:\, \begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u_1\\u_2\\u_3 \end{pmatrix}=0\mbox{ for all } \begin{pmatrix} v_1 &v_2 &v_3 \end{pmatrix} \in \Re^3 \right\}\]

Is this approach correct? Is this how the left and right kernels are given when the bilinear function is represented by the so called Gramian matrix? :)

Sure.
Looks good.

You can simplify it a bit though.
You can find the left kernel of \(f\) using:
\[\left\{v\in \mathbb R^3:\, v^T \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix}=0 \right\}\]
That amounts to the same thing.
Do you see why?

Note that these are the eigenvectors of the transpose for the eigenvalue 0.
 
I like Serena said:
Sure.
Looks good.

You can simplify it a bit though.
You can find the left kernel of \(f\) using:
\[\left\{v\in \mathbb R^3:\, v^T \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix}=0 \right\}\]
That amounts to the same thing.
Do you see why?

Note that these are the eigenvectors of the transpose for the eigenvalue 0.

Thanks very much for the confirmation. Of course I see it. Since,

\[\begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u_1\\u_2\\u_3 \end{pmatrix}=0\]

holds for each vector \(\begin{pmatrix} u_1\\u_2\\u_3 \end{pmatrix}\) we can choose any two vectors \(\begin{pmatrix} u^1_1\\u^1_2\\u^1_3 \end{pmatrix}\) and \(\begin{pmatrix} u^2_1\\u^2_2\\u^2_3 \end{pmatrix}\) such that,

\[\begin{pmatrix} u^1_1\\u^1_2\\u^1_3 \end{pmatrix}\neq\begin{pmatrix} u^2_1\\u^2_2\\u^2_3 \end{pmatrix}\]

Then,

\[ \begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u^1_1\\u^1_2\\u^1_3 \end{pmatrix} = \begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix} \begin{pmatrix} u^2_1\\u^2_2\\u^2_3\end{pmatrix}=0\]

Hence,

\[\begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix}\left( \begin{pmatrix} u^1_1\\u^1_2\\u^1_3 \end{pmatrix} -\begin{pmatrix}u^2_1\\u^2_2\\u^2_3\end{pmatrix} \right)=0\]

Since,

\[ \begin{pmatrix} u^1_1\\u^1_2\\u^1_3 \end{pmatrix} -\begin{pmatrix}u^2_1\\u^2_2\\u^2_3\end{pmatrix} \neq 0\]

\[\begin{pmatrix}v_1& v_2& v_3\end{pmatrix} \begin{pmatrix} 4&3&2\\1&3&5\\3&6&9 \end{pmatrix}=0\]

Is there a shorter version for this? :)
 
Looks good! :)

Is there a shorter version for this?

Hmm, a shorter version?

How about:

Let A be the matrix.

Suppose we have a $v$ in the left kernel such that $v^T A \ne 0$.
Then there is a vector $u$ such that $v^T A u \ne 0$
This is a contradiction.

If on the other hand we pick any $v$ such that $v^T A = 0$, then for any $u$ we have $v^T A u = 0$.

Therefore the left kernel is the set of all $v$ with $v^T A = 0$. $\qquad \blacksquare$
 
I like Serena said:
Looks good! :)
Hmm, a shorter version?

How about:

Let A be the matrix.

Suppose we have a $v$ in the left kernel such that $v^T A \ne 0$.
Then there is a vector $u$ such that $v^T A u \ne 0$
This is a contradiction.

If on the other hand we pick any $v$ such that $v^T A = 0$, then for any $u$ we have $v^T A u = 0$.

Therefore the left kernel is the set of all $v$ with $v^T A = 0$. $\qquad \blacksquare$

Thanks very much Serena. :) Indeed this is something much more simpler.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
31
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K