MHB Binomial series (radius of convergence)

AI Thread Summary
The radius of convergence for binomial series is not universally 1; it depends on the value of α. For |x| < 1, the series converges absolutely to (1+x)α for any real α. However, if α is a non-negative integer, the series becomes finite, resulting in an infinite radius of convergence. Thus, the radius of convergence varies based on the parameters of the series. Understanding these nuances is crucial for accurately determining convergence behavior.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Is the radius of convergence for all binomial series exactly 1?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
If $|x|<1$, the binomial series $\displaystyle\sum_{k=0}^{\infty} \; {\alpha \choose k} \; x^k $ converges absolutely to $(1+x)^{\alpha}$ for any $\alpha\in\mathbb{R}$, but not always the radius of convergence is $1$. For example, if $\alpha$ is a non-negative integer, then the series is finite and the radius of convergence is $+\infty$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top