MHB Books to Learn Measure Theory Theory: Borel, Lebesgue, Cantor Set & More

Click For Summary
Recommended books for learning measure theory include "Lebesgue Integration on Euclidean Space" by Frank Jones, which provides a basic introduction to Lebesgue integration and covers many relevant topics. Another suggestion is "The Lebesgue-Stieltjes Integral" by Michael Carter and Bruce van Brunt, focusing on the practical application of Lebesgue integrals. However, both texts emphasize integration over measure theory itself, which may not fully meet the request for a comprehensive measure theory resource. For a deeper understanding of measure theory concepts like Borel sets, Lebesgue measure properties, and convergence theorems, additional graduate-level texts may be necessary. These recommendations serve as a starting point for exploring the complexities of measure theory.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

What book would you recommend me to read about measure theory and especially the following:

Measure and outer meansure, Borel sets, the outer Lebesgue measure.
The Cantor set.
Properties of Lebesgue measure (translation invariance, completeness, regularity, uniqueness).
Steinhaus theorem, non-Lebesgue measurable sets.
Measurable functions, integrable functions, convergence theorems.
Elementary theory of Hilbert spaces.
Complex measures, the Radon-Nikodym theorem.
The maximal function Hardy-Littlewood.
Differentiation of measures and functions.
Product of measures. The Fubini theorem.
Change of variable. Polar coordinates. Convolutions.

?? (Wondering)
 
Mathematics news on Phys.org
mathmari said:
Hey! :o

What book would you recommend me to read about measure theory and especially the following:

Measure and outer meansure, Borel sets, the outer Lebesgue measure.
The Cantor set.
Properties of Lebesgue measure (translation invariance, completeness, regularity, uniqueness).
Steinhaus theorem, non-Lebesgue measurable sets.
Measurable functions, integrable functions, convergence theorems.
Elementary theory of Hilbert spaces.
Complex measures, the Radon-Nikodym theorem.
The maximal function Hardy-Littlewood.
Differentiation of measures and functions.
Product of measures. The Fubini theorem.
Change of variable. Polar coordinates. Convolutions.

?? (Wondering)
Hello mathmari,

A book which gives a basic introduction to Lebesgue Integration and seem to cover most of your list is as follows:

"Lebesgue Integration on Euclidean space" by Frank Jones (Jones and Bartlett Publishers)

Another book which focuses on giving students the knowledge and skills to use the Lebesgue or Lebesgue-Stieltjes integrals is as follows:

"The Lebesgue-Stieltjes Integral" by Michael Carter and Bruce van Brunt (Springer)

Hope that helps ... ...If you are looking for a high level of generality and also rigour then possibly someone else can help with some more graduate level texts, but the books I have recommended will give you a gentle introduction to measure theory and Lebesgue integration although their emphasis is less on measure theory and more on integration ... ... so maybe I really have not answered your question ...

Best Regards,

Peter***EDIT***

Sorry mathmari,

I may have answered you request too quickly without studying your request ... ... as I have noted above I am recommending books that focus on Lebesgue Integration rather than just focussing on measure theory ... indeed the second book I mentioned is very focussed on integration and has very little on measure theory ...

Peter
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
5
Views
3K
Replies
2
Views
2K