- #1

bobinthebox

- 29

- 0

I'm trying to understand the rationale behind the boundary condition for the problem "Finite bending of an incompressible elastic block". (See here from page 180).Here we have as Cauchy Stress tensor (see eq. (5.82)):

##T = - \pi I + \mu (\frac{l_0^2}{4 \bar{\theta}^2 r^2} e_r \otimes e_r + \frac{4 \bar{\theta}^2} r^2{l_0^2} e_{\theta} \otimes e_{\theta}- I)##

At page 183, in order to impose

**null traction on the curved boundaries**, the author writes

##T_r(r_i) = T_{r_i + h}=0##

I'm having some troubles on how to interpret geometrically the first one of the two above conditions. I'll add a sketch hereafter.

Is that right?