Boundary conditions spherical coordinates

Click For Summary
SUMMARY

The discussion focuses on solving boundary conditions for Laplace's equation in spherical coordinates, specifically for the axisymmetric case where the boundary conditions are defined as $u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$. The general solution is expressed as a series involving Legendre polynomials, $P_n(\cos\theta)$, and coefficients $A_n$ and $B_n$. The participant aims to derive a specific form of the solution involving the ratio of $r$ and $b$, but encounters difficulties in applying the boundary conditions correctly.

PREREQUISITES
  • Understanding of Laplace's equation in spherical coordinates
  • Familiarity with Legendre polynomials and their properties
  • Knowledge of boundary value problems in mathematical physics
  • Experience with series solutions in partial differential equations
NEXT STEPS
  • Study the derivation of solutions to Laplace's equation in spherical coordinates
  • Explore the properties and applications of Legendre polynomials
  • Investigate boundary value problem techniques in mathematical physics
  • Learn about convergence criteria for series solutions in PDEs
USEFUL FOR

Mathematicians, physicists, and engineers working on problems involving Laplace's equation, particularly in fields such as electrostatics and fluid dynamics.

Dustinsfl
Messages
2,217
Reaction score
5
Laplace axisymmetric
$u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$ where $a<\theta<b$.

The general soln is
$$
u(r,\theta) = \sum_{n=0}^{\infty}A_n r^n P_n(\cos\theta) + B_n\frac{1}{r^{n+1}}P_n(\cos\theta)
$$

I am supposed to obtain
$$
u(r,\theta) = \sum_{n = 0}^{\infty}A_n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right]P_n(\cos\theta)
$$
with
$$
A_nb^n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right] = \frac{2n + 1}{2}\int_0^{\pi}f(\theta)P_n(\cos\theta) \sin \theta d\theta.
$$
Using the BC I can't obtain that.
 
Physics news on Phys.org
dwsmith said:
Laplace axisymmetric
$u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$ where $a<\theta<b$.

The general soln is
$$
u(r,\theta) = \sum_{n=0}^{\infty}A_n r^n P_n(\cos\theta) + B_n\frac{1}{r^{n+1}}P_n(\cos\theta)
$$

I am supposed to obtain
$$
u(r,\theta) = \sum_{n = 0}^{\infty}A_n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right]P_n(\cos\theta)
$$
with
$$
A_nb^n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right] = \frac{2n + 1}{2}\int_0^{\pi}f(\theta)P_n(\cos\theta) \sin \theta d\theta.
$$
Using the BC I can't obtain that.

I have this solved.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K