MHB Boundary conditions spherical coordinates

Dustinsfl
Messages
2,217
Reaction score
5
Laplace axisymmetric
$u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$ where $a<\theta<b$.

The general soln is
$$
u(r,\theta) = \sum_{n=0}^{\infty}A_n r^n P_n(\cos\theta) + B_n\frac{1}{r^{n+1}}P_n(\cos\theta)
$$

I am supposed to obtain
$$
u(r,\theta) = \sum_{n = 0}^{\infty}A_n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right]P_n(\cos\theta)
$$
with
$$
A_nb^n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right] = \frac{2n + 1}{2}\int_0^{\pi}f(\theta)P_n(\cos\theta) \sin \theta d\theta.
$$
Using the BC I can't obtain that.
 
Physics news on Phys.org
dwsmith said:
Laplace axisymmetric
$u(a,\theta) = f(\theta)$ and $u(b,\theta) = 0$ where $a<\theta<b$.

The general soln is
$$
u(r,\theta) = \sum_{n=0}^{\infty}A_n r^n P_n(\cos\theta) + B_n\frac{1}{r^{n+1}}P_n(\cos\theta)
$$

I am supposed to obtain
$$
u(r,\theta) = \sum_{n = 0}^{\infty}A_n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right]P_n(\cos\theta)
$$
with
$$
A_nb^n\left[\left(\frac{r}{b}\right)^n - \frac{b}{r}^{n + 1}\right] = \frac{2n + 1}{2}\int_0^{\pi}f(\theta)P_n(\cos\theta) \sin \theta d\theta.
$$
Using the BC I can't obtain that.

I have this solved.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top