olgerm
Gold Member
- 532
- 35
very interesting that any function ##\mathbb{R}^A ->\mathbb{C}## is equal to sum of countable number of functions. I already found one option for basisvectors, so that it can be done.
##<base|[i_1](a_{arguments\ of\ wavefunction})=\delta(v(i_1)-a_{arguments\ of\ wavefunction})\\
v(i_1)[i_2]=\sum_{i_3=-\infty}^{\infty}(2^{i_3}*((\lfloor i_1*2^{-2*i_3*A+i_2} \rfloor\mod_2)+\sqrt{-1}*(\lfloor i_1*2^{-2*i_3*A+i_2+1} \rfloor\ mod_2)))##
##\delta## is a function that returns 1 if its argument is 0-vector and 0 otherwise.
##<base|[i_1](a_{arguments\ of\ wavefunction})=\delta(v(i_1)-a_{arguments\ of\ wavefunction})\\
v(i_1)[i_2]=\sum_{i_3=-\infty}^{\infty}(2^{i_3}*((\lfloor i_1*2^{-2*i_3*A+i_2} \rfloor\mod_2)+\sqrt{-1}*(\lfloor i_1*2^{-2*i_3*A+i_2+1} \rfloor\ mod_2)))##
##\delta## is a function that returns 1 if its argument is 0-vector and 0 otherwise.
Last edited: