- #1
- 215
- 57
Greetings,
I currently work my way through Langevin Dynamics which, in a certain limit, becomes Brownian Motion.
I refer to this brief article on Wikipedia: https://en.wikipedia.org/wiki/Brownian_dynamics
I understand the general LD equation given there. In order to obtain Brownian Dynamics, one sets the net acceleration (to be precise, its average) to 0 and reorganizes the equations. I don't really see how this is an assumption of "no inertia". If inertia is the resistance of mass against acceleration, than zero acceleration (independently of the applied force) should correspond to infinite inertia, should it not?
I currently work my way through Langevin Dynamics which, in a certain limit, becomes Brownian Motion.
I refer to this brief article on Wikipedia: https://en.wikipedia.org/wiki/Brownian_dynamics
I understand the general LD equation given there. In order to obtain Brownian Dynamics, one sets the net acceleration (to be precise, its average) to 0 and reorganizes the equations. I don't really see how this is an assumption of "no inertia". If inertia is the resistance of mass against acceleration, than zero acceleration (independently of the applied force) should correspond to infinite inertia, should it not?