MHB Bullet imbedding in a block on a frictionless surface

Dustinsfl
Messages
2,217
Reaction score
5
A 10g bullet with v = 1000 m/s strikes a 100g block which is at rest. What is their combined velocity? Can this be done with conservation of energy? momemtum?

Here we have inelastic collision so by conservation of momentum
\[
10\cdot 1000 + 0 = 110\cdot v_f\Rightarrow v_f = \frac{1000}{11}m/s.
\]
Can this be done with CoE? If so, how?
 
Mathematics news on Phys.org
Re: bullet imbedding in a block on a frictionless surface

dwsmith said:
A 10g bullet with v = 1000 m/s strikes a 100g block which is at rest. What is their combined velocity? Can this be done with conservation of energy? momemtum?

Here we have inelastic collision so by conservation of momentum
\[
10\cdot 1000 + 0 = 110\cdot v_f\Rightarrow v_f = \frac{1000}{11}m/s.
\]
Can this be done with CoE? If so, how?

No, it cannot, because the collision is inelastic. An elastic collision, by definition, is a collision in which kinetic energy is conserved. With an inelastic collision, it is not conserved. Moreover, you're given no information about the force during the collision, so you can't use Newton's Second Law, or a more general conservation of energy approach. Conservation of Momentum is all that's available to you.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top