Buoyant Force and Archimede's principle

Click For Summary
The discussion focuses on calculating the buoyant force acting on a helium-filled balloon, applying Archimede's principle. The buoyant force is determined by the weight of the fluid displaced, which requires the density of the surrounding air. Participants clarify that the initial equation used for buoyant force does not account for the tension from the tethered balloon, which affects acceleration. The correct approach involves using the air density to find the buoyant force and then calculating the balloon's acceleration using the net forces. Understanding these principles is essential for accurately solving the physics problem presented.
Ering
Messages
8
Reaction score
0

Homework Statement


A balloon used for a physics experiment has a radius of 3.15m and is filled with helium. The total mass of the balloon is 15.2kg and the density of the surrounding air is 1.28 kg/m3.
a. How much buoyant force is acting on the balloon?
b. When the balloon is released from the ground, what is the acceleration of the balloon?
c. As the balloon rises, what happens to the radius of the balloon? Explain.

Homework Equations


FB = WDis (buoyant force equals weight of the fluid displaced)
Archimede's principle = an immersed object is buoyed up by a force equal to the weight of the fluid it displaces

P = F/A (pressure equals force divided by area)

P2 = P1 + ρgh
P2 = pressure at top
P1 = pressure at bottom
ρ = density
g = gravity
h = depth/height

ρ = m/v (density equals mass divided by volume)

P1 + 1/2 ρV12 + ρgy1 = P2 + 1/2 ρV22 + ρgy2
V = speed
y = height/depth
P = pressure
ρ = density
g = gravity

The Attempt at a Solution


a. [/B]Buoyant force(Fb) = ?
I drew a free body diagram of the balloon, with Fb pointing up, and Wb, weight of the balloon, pointing down.
Summed forces:
ΣFy = may
Fb - Wb = 0 (since acceleration = 0)
Fb = Wb
Fb = Mb(g)
Fb = (15.2 kg)(9.81 m/s2)
Fb = 149.112 N

I'm not sure if this is correct or not? Are there any other forces acting on the balloon that I missed?

b. Acceleration of balloon (ab) = ?

Fb - Wb = ma
a = (Fb - Wb) / m

That's as far as I've gotten with this one - I'm not sure if this is the correct way to go about finding the acceleration. If so, for the m in the equation, would i be using the mass of the balloon?

I feel like there's something I need to add since the density of the air was given in the problem, but I'm not sure where that fits in?

Any help would be great,
thanks!
 
Last edited:
Physics news on Phys.org
Did your FBD include the tension in the rope holding the balloon down? It's only because it's initially tethered that it doesn't accelerate. So your equation:

Fb - Wb = 0 (since acceleration = 0)

is not correct.

Use Archimede's principle to calculate the buoyant force. That's where the density of the air comes into play.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 10 ·
Replies
10
Views
972
  • · Replies 84 ·
3
Replies
84
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
3
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K