- #1
AdkinsJr
- 150
- 0
I need to find the hydrostatic force exerted on a plane submerged vertically in water. I attached a diagram of the problem.
Here are the basic definitions:
---------------------------
d=distance from surface, p=density, P=pressure
[tex]p=\frac{m}{V}[/tex]
[tex]P=pgd=\delta d[/tex]
[tex]F=mg=pgAd[/tex]
---------------------------
The area of the ith strip is [tex]A_i=6\Delta y[/tex] so the pressure exerted on the ith strip is [tex]\delta d_i=pgd_i=pg(6-y_i^*)[/tex]
The hydrostatic force on the ith strip is [tex]F_i=\delta_iA_i=6pg(6-y_i)\Deltay[/tex]
The approximate force along the entire surface is therefore:
[tex]F_{net}=\lim_{n-\infty}\Sigma_{i=1}^n6pg(6-y_i)\Delta y[/tex]
[tex]=6pg\int_0^4(6-y)dy[/tex]
Am I setting this up correctly?
Here are the basic definitions:
---------------------------
d=distance from surface, p=density, P=pressure
[tex]p=\frac{m}{V}[/tex]
[tex]P=pgd=\delta d[/tex]
[tex]F=mg=pgAd[/tex]
---------------------------
The area of the ith strip is [tex]A_i=6\Delta y[/tex] so the pressure exerted on the ith strip is [tex]\delta d_i=pgd_i=pg(6-y_i^*)[/tex]
The hydrostatic force on the ith strip is [tex]F_i=\delta_iA_i=6pg(6-y_i)\Deltay[/tex]
The approximate force along the entire surface is therefore:
[tex]F_{net}=\lim_{n-\infty}\Sigma_{i=1}^n6pg(6-y_i)\Delta y[/tex]
[tex]=6pg\int_0^4(6-y)dy[/tex]
Am I setting this up correctly?