Calculate limit value with several variables

Click For Summary

Homework Help Overview

The discussion revolves around calculating a limit involving multiple variables in the context of entropy and pressure in a lattice gas. The original poster presents a formula for pressure and seeks guidance on how to approach the simultaneous limit as several variables approach infinity.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster questions whether to calculate the limits sequentially for each variable or simultaneously. Some participants suggest that the order of limits does not affect the final result if the simultaneous limit exists. They propose focusing on the limits of individual components of the formula first.

Discussion Status

Participants are exploring the implications of taking limits in different orders and discussing the validity of replacing components with their limits. There is acknowledgment of potential typos and unbalanced parentheses in the original formula, indicating a need for clarification.

Contextual Notes

There is mention of confusion regarding the variables used, specifically the reference to ##M## instead of ##N##, and the behavior of ##a_0## as it approaches both zero and infinity, which raises questions about the setup of the problem.

GravityX
Messages
19
Reaction score
1
Homework Statement
Calculate the limit of ##P## when ##a_0 \rightarrow 0## and ##M,n \rightarrow \infty## with ##a=a_0n## and ##L=a_0*M##.
Relevant Equations
none
Hi,

I had to calculate the entropy in a task of a lattice gas and derive a formula for the pressure from it and got the following

$$P=\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]$$

But now I am supposed to calculate the following limit

$$\lim\limits_{a_0 \rightarrow \infty}{} \lim\limits_{M \rightarrow \infty}{} \lim\limits_{n \rightarrow \infty}{\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]}$$

So not the limit for ##a_0## , ##M## and ##n## but all at the same time.

Should I first calculate the limit for one, say for ##a_0## and what I got for that, the limit for ##M## or better said ##L## etc?
 
Physics news on Phys.org
If the simultaneous limit exists, it doesn't matter what order you take the limits in. The eventual answer must be the same. Although some orders may be easier than others.

Where they exist, first calculate limits for components of the formula, and replace those components by their limits in the formula. That's generally valid as long as both the overall limit and the component's limit exist.

So for instance, ##\lim_{a_0\to\infty} \frac L{a_0}## is easy.
Another hint, for the expression in square brackets, use the fact that ##\log a - \log b = \log\left(\frac ab\right)## and then rewrite the fractional expression you're taking the log of as ##1 + \frac{1}{denominator}##. You'll find it easier to take limits that way.

By the way, there is no ##M## in your formulas. I presume you mean ##N##.
 
andrewkirk said:
By the way, there is no ##M## in your formulas. I presume you mean ##N##.
GravityX said:
##a=a_0n## and ##L=a_0*M##.
Messy. First I see ##a_0\downarrow 0##, then ##a_0\uparrow \infty##. Typos ?
 
BvU said:
Messy. First I see ##a_0\downarrow 0##, then ##a_0\uparrow \infty##. Typos ?
Also:
You have unbalanced parentheses.
 

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K