Calculate limit value with several variables

Click For Summary
SUMMARY

The discussion focuses on calculating the limit of a pressure formula derived from entropy in a lattice gas system, specifically the expression $$\lim\limits_{a_0 \rightarrow \infty}{} \lim\limits_{M \rightarrow \infty}{} \lim\limits_{n \rightarrow \infty}{\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]}$$. Participants emphasize the importance of calculating limits for individual components of the formula before substituting them back into the overall limit. They also clarify that there is no variable ##M## in the original formulas, suggesting it should be ##N## instead. Additionally, they point out the need to correct unbalanced parentheses in the expressions.

PREREQUISITES
  • Understanding of thermodynamic concepts such as entropy and pressure.
  • Familiarity with calculus, specifically limit calculations.
  • Knowledge of logarithmic properties and their applications in mathematical expressions.
  • Proficiency in manipulating algebraic expressions involving multiple variables.
NEXT STEPS
  • Study advanced limit theorems in calculus, particularly for multiple variables.
  • Learn about the properties of logarithms and their applications in physics.
  • Explore entropy calculations in statistical mechanics for deeper insights.
  • Review common pitfalls in limit calculations, such as handling unbalanced parentheses.
USEFUL FOR

This discussion is beneficial for physicists, mathematicians, and students engaged in thermodynamics and statistical mechanics, particularly those working on complex limit calculations involving multiple variables.

GravityX
Messages
19
Reaction score
1
Homework Statement
Calculate the limit of ##P## when ##a_0 \rightarrow 0## and ##M,n \rightarrow \infty## with ##a=a_0n## and ##L=a_0*M##.
Relevant Equations
none
Hi,

I had to calculate the entropy in a task of a lattice gas and derive a formula for the pressure from it and got the following

$$P=\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]$$

But now I am supposed to calculate the following limit

$$\lim\limits_{a_0 \rightarrow \infty}{} \lim\limits_{M \rightarrow \infty}{} \lim\limits_{n \rightarrow \infty}{\frac{k_b T}{a_0}\Bigl[ \ln(\frac{L}{a_0}-N(n-1)-\ln(\frac{L}{a_0}-nN) \Bigr]}$$

So not the limit for ##a_0## , ##M## and ##n## but all at the same time.

Should I first calculate the limit for one, say for ##a_0## and what I got for that, the limit for ##M## or better said ##L## etc?
 
Physics news on Phys.org
If the simultaneous limit exists, it doesn't matter what order you take the limits in. The eventual answer must be the same. Although some orders may be easier than others.

Where they exist, first calculate limits for components of the formula, and replace those components by their limits in the formula. That's generally valid as long as both the overall limit and the component's limit exist.

So for instance, ##\lim_{a_0\to\infty} \frac L{a_0}## is easy.
Another hint, for the expression in square brackets, use the fact that ##\log a - \log b = \log\left(\frac ab\right)## and then rewrite the fractional expression you're taking the log of as ##1 + \frac{1}{denominator}##. You'll find it easier to take limits that way.

By the way, there is no ##M## in your formulas. I presume you mean ##N##.
 
andrewkirk said:
By the way, there is no ##M## in your formulas. I presume you mean ##N##.
GravityX said:
##a=a_0n## and ##L=a_0*M##.
Messy. First I see ##a_0\downarrow 0##, then ##a_0\uparrow \infty##. Typos ?
 
BvU said:
Messy. First I see ##a_0\downarrow 0##, then ##a_0\uparrow \infty##. Typos ?
Also:
You have unbalanced parentheses.
 

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K