Calculate magnetic dipole of other planets relative to the Earth

Click For Summary
SUMMARY

This discussion focuses on calculating the magnetic dipole of various planets relative to Earth using specific equations and parameters. The primary equation discussed is B = M/r^3, where M represents the magnetic dipole moment and r is the planet's radius. Participants clarify the interpretation of the magnetic dipole moment for Mercury, emphasizing the need to use relative values from a provided table. The conversation also addresses the correct application of solar wind density and its dependence on distance, confirming the inclusion of the factor 1/r^2 under certain conditions.

PREREQUISITES
  • Understanding of magnetic dipole moments and their calculation.
  • Familiarity with solar wind density and its relation to distance.
  • Knowledge of the equation B = M/r^3 and its components.
  • Ability to interpret data from tables, specifically regarding planetary magnetic moments.
NEXT STEPS
  • Research the calculation of magnetic dipole moments for different celestial bodies.
  • Learn about solar wind properties and their impact on planetary magnetospheres.
  • Explore the relationship between magnetic fields and planetary radii.
  • Investigate the use of relative values in astrophysical calculations, particularly in magnetism.
USEFUL FOR

Astronomers, astrophysicists, and students studying planetary science who are interested in understanding magnetic fields and dipole moments of planets relative to Earth.

Kovac
Messages
13
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
3.PNG


So I have a few questions regarding the above task.

I will use this equation to get the results for the different planets:
eq.PNG


Questions:

  1. So in the equation density p= mass of proton x proton density of the solar wind x 1000 000 (conversion between kgcm^-3 to kgm^-3) x 1/r^2 (I assume that I should multiply this equation in here since it says that the solar wind density is decreasing with distance). Question: Is this correctly assumed?
  2. B = M/r^3 where M= magnetic dipole of the planet in question, r= radius of the planet in question. For radius I have a table with values, but for M Im having trouble interpreting what to write since it says "relative to earth".
    table.PNG
Question: What does the M value become for Mercury? Should I take Eart value * Mercury relative value? Or Is it simply 3.8 x 10^-4 or should I take the delta between earth value and the value for Mercury in the table? Its because it says relative to earth what confuses me, if you google the value for mercury its a lot bigger than the table is showing.μ0= 4pi x 10^-7 Vs/Am [magnetic permiability of free space], stays the same (not planet dependent)
u= solar wind velocity (not planet dependent). Will assume a value.
 

Attachments

  • 3.PNG
    3.PNG
    9.5 KB · Views: 116
Last edited:
Physics news on Phys.org
Kovac said:
  1. So in the equation density p= mass of proton x proton density of the solar wind x 1000 000 (conversion between kgcm^-3 to kgm^-3) x 1/r^2 (I assume that I should multiply this equation in here since it says that the solar wind density is decreasing with distance). Question: Is this correctly assumed?
Yes, the factor of ##1/r^2## should be there. [EDIT: Actually, you should NOT have the explicit factor of ##1/r^2##if your proton density already includes the ##1/r^2## behavior. Answering the questions below should help clarify this.]

You are given that the proton number density at ##r = 1## AU is ##10## cm-3. So, how would you express the proton number density as a function of ##r## where ##r## is in AU?

How would you express the mass density ##\rho## of protons as a function of ##r## for ##r## in AU?

Kovac said:
Question: What does the M value become for Mercury? Should I take Eart value * Mercury relative value? Or Is it simply 3.8 x 10^-4 or should I take the delta between earth value and the value for Mercury in the table? Its because it says relative to earth what confuses me, if you google the value for mercury its a lot bigger than the table is showing.

For the earth you have the equation
1696096200153.png

Presumably, ##B_E## is some sort of value of the earth's magnetic field at the earth's surface. Hopefully, you have a value for this. For a different planet, you will need to replace ##B_E## by the planet's surface magnetic field, ##B_{planet}##. Try to express ##B_{planet}## in terms of ##B_E## , the radii of the earth and the planet, and the magnetic dipole moments of the earth and the planet. This should allow you to find ##B_{planet}## in terms of ##B_E## and values in your table.

EDIT #2: I just noticed that your table in post #1 gives a value for the earth's magnetic moment at the bottom of the table. So, you can use the table to find the numerical value of the magnetic moment of the planet. Then you can find the magnetic field at the surface of the planet from the magnetic moment and the radius of the planet. So, you will not need to worry about a numerical value for the earth's field ##B_E##.
 
Last edited:
Even though B is usually used for magnetic field (in Tesla) here it designates the magnetic moment. And if you have the relative radius on the left hand size it should be relative moment on the right hand size.
https://en.wikipedia.org/wiki/Magnetopause
 
nasu said:
Even though B is usually used for magnetic field (in Tesla) here it designates the magnetic moment. And if you have the relative radius on the left hand size it should be relative moment on the right hand size.
https://en.wikipedia.org/wiki/Magnetopause
The link writes the magnetopause distance as $$r_{mp} \approx \sqrt[6]{\frac {2 B_0^2}{\mu_0 \rho v^2}}$$ where ##B_0## is the magnetic moment. (Not a great notation since the link also used ##B## for magnetic field.)

However, in this problem, the formula given is for the ratio of ##r_{mp}## to the earth's radius ##r_E##. So, using the formula from wikipedia, we have $$\frac{r_{mp}}{r_E} \approx \sqrt[6]{\frac {2 (B_0/r_E^3)^2}{\mu_0 \rho v^2}}$$ The quantity ##B_0/(r_E)^3## is the earth's magnetic field at the surface of the earth: ##B_E##. So, we get $$\frac{r_{mp}}{r_E} \approx \sqrt[6]{\frac {2 B_E^2}{\mu_0 \rho v^2}}$$ This agrees with the formula given in the first post except for numerical factors.
 
Kovac said:
Question: What does the M value become for Mercury?
This table of planetary moments (relative to Earth's) and magnetopause distances (in terms of planetary radii), from the Wikipedia entry that @TSny cited, should help answer some of your questions and serve as a check on your calculations:
1696102287833.png
 
  • Like
Likes   Reactions: TSny

Similar threads

Replies
7
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
1
Views
2K
Replies
7
Views
3K
Replies
6
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
14K
Replies
3
Views
3K
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K