Calculate orbital angular momentum

AI Thread Summary
To calculate orbital angular momentum, it's essential to understand the relationship between distance, mass, and velocity in the context of Kepler's Second Law. The problem involves a satellite at a distance D from Earth's center, moving at V km/s, and seeks to determine the angle θ. However, accurately finding θ requires knowing if the satellite is at an orbital extreme, such as apogee or perigee, which would provide the necessary information to calculate sin θ. Without this specific condition, the problem cannot be solved effectively. Understanding these orbital dynamics is crucial for accurate calculations of angular momentum.
ssarpal
Messages
7
Reaction score
1
Homework Statement
A satellite of mass M kgs has an elliptical orbit of T hours around the Earth with ##Rmax = N * Rmin##.
At one instant, the satellite is at a distance D meters from center of Earth and moving at V km/s.

Q) Find the orbital angular momentum.
Relevant Equations
L = r * m * v * sin θ
The section Kepler’s Second Law here describes the above equation.

In this problem,
##\text{r = D, m = M and v = V}##

What is the way to go about finding out ##\theta## as shown in Figure 13.21?
 
Physics news on Phys.org
Perhaps trying to find ##\theta## isn't the way to go. Any other ideas?
 
ssarpal said:
At one instant, the satellite is at a distance D meters from center of Earth and moving at V km/s.
As you seem to have discovered, this cannot be be solved unless the "one instant" is known to be at one of the orbital extremes (apogee or perigee). Then you would naturally know ##\sin \theta##.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top