Calculate Principal Inertias - Exercise Hint

  • Thread starter Thread starter fabiancillo
  • Start date Start date
Click For Summary
The discussion focuses on calculating the principal inertias for a given painted area with respect to the x and y axes. Participants suggest using the superposition property of moment of inertia to break the shape into simpler components for easier calculation. Key formulas provided include I_x = (bh^3)/12 and I_{xy} = (b^2h^2)/24, specifically for triangles. There is a mention of needing equations for rectangles and the potential application of the parallel axis theorem. The conversation highlights the importance of understanding these concepts to solve the exercise effectively.
fabiancillo
Messages
27
Reaction score
1
Thread moved from the technical forums to the schoolwork forums
Hello I have problems with this exercise

For the painted area calculate inertias with respect to the x and y axes and the principal inertias

Hint:
$I_x = \displaystyle\frac{bh^3}{12}$
$I_{xy} = \displaystyle\frac{b^2h^2}{24}$

Thanks
 

Attachments

  • inerciaprincipals.png
    inerciaprincipals.png
    158.2 KB · Views: 130
Physics news on Phys.org
Keeping in mind the superposition property of the moment of inertia, can you split this shape up into pieces and evaluate ##I_x## and ##I_y## for them separately?
 
ergospherical said:
Keeping in mind the superposition property of the moment of inertia, can you split this shape up into pieces and evaluate ##I_x## and ##I_y## for them separately?
I am totally blocked
 
fabiancillo said:
I am totally blocked
That's also called a moment of inertia!
 
  • Haha
  • Like
Likes jbriggs444, haruspex and ergospherical
Ok I'll try
 
fabiancillo said:
$$I_x = \displaystyle\frac{bh^3}{12}$$
$$I_{xy} = \displaystyle\frac{b^2h^2}{24}$$
Fixed the LaTeX by doubling the dollar signs.
I note you only quote equations for a triangle. Do you have any for the rectangles? If not, you'll need to cut those into triangles.
Do you know the parallel axis theorem?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
8
Views
12K
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K