Calculate Principal Inertias - Exercise Hint

  • Thread starter Thread starter fabiancillo
  • Start date Start date
AI Thread Summary
The discussion focuses on calculating the principal inertias for a given painted area with respect to the x and y axes. Participants suggest using the superposition property of moment of inertia to break the shape into simpler components for easier calculation. Key formulas provided include I_x = (bh^3)/12 and I_{xy} = (b^2h^2)/24, specifically for triangles. There is a mention of needing equations for rectangles and the potential application of the parallel axis theorem. The conversation highlights the importance of understanding these concepts to solve the exercise effectively.
fabiancillo
Messages
27
Reaction score
1
Thread moved from the technical forums to the schoolwork forums
Hello I have problems with this exercise

For the painted area calculate inertias with respect to the x and y axes and the principal inertias

Hint:
$I_x = \displaystyle\frac{bh^3}{12}$
$I_{xy} = \displaystyle\frac{b^2h^2}{24}$

Thanks
 

Attachments

  • inerciaprincipals.png
    inerciaprincipals.png
    158.2 KB · Views: 127
Physics news on Phys.org
Keeping in mind the superposition property of the moment of inertia, can you split this shape up into pieces and evaluate ##I_x## and ##I_y## for them separately?
 
ergospherical said:
Keeping in mind the superposition property of the moment of inertia, can you split this shape up into pieces and evaluate ##I_x## and ##I_y## for them separately?
I am totally blocked
 
fabiancillo said:
I am totally blocked
That's also called a moment of inertia!
 
  • Haha
  • Like
Likes jbriggs444, haruspex and ergospherical
Ok I'll try
 
fabiancillo said:
$$I_x = \displaystyle\frac{bh^3}{12}$$
$$I_{xy} = \displaystyle\frac{b^2h^2}{24}$$
Fixed the LaTeX by doubling the dollar signs.
I note you only quote equations for a triangle. Do you have any for the rectangles? If not, you'll need to cut those into triangles.
Do you know the parallel axis theorem?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top