- #1
Benjamin_harsh
- 211
- 5
- Homework Statement
- Find the moment of Inertia of the cross-sectional area of an I section about its centroidal axis.
- Relevant Equations
- ##I_{XX1} = I_{.G1.X} + A_{1}.Y^2##
Find the moment of Inertia of the cross-sectional area of an I section about its centroidal axis:
Sol: Here A1, A2 and A3 are the areas:
Centriod ; ##X_{C} = \large \frac {A_{1}X_{1} + A_{2}X_{2}+A_{3}X_{3}}{A_{1} + A{2}+ A_{3}}## ##= 15 cm##
Centriod ; ##Y_{C} = \large \frac {A_{1}Y_{1} + A_{2}Y_{2}+A_{3}Y_{3}}{A_{1} + A{2}+ A_{3}}## ##= 10.96 cm##
Moment of Inertia w.r.t Centroid X-X:
##I_{XX} = I_{XX1} + I_{XX2} + I_{XX3}##
##I_{XX1} = I_{G1.X} + A_{1}Y^{2}##
##= I_{G1.X} + A_{1}.(Y_{1} - \overline {Y})^{2}##
##= \large \frac {30*5}{12}## ##+ 150(25 - 10.96^{2})## (Here ##I_{G1.X} = \large \frac {b.d^3}{12})##
##= 11048.24 cm^{4}##
##I_{XX2} = I_{G2.X} + A_{2}Y^{2}##
##= I_{G1.X} + A_{2}.(Y_{2} - \overline {Y})^{2}##
##= \large \frac {5*15}{12}## ## + 75(12.5 - 10.96^{2})##
##=1584.12 cm^{4}##
##I_{XX3} = I_{G3.X} + A_{3}.Y^{2}##
##= I_{G3.X} + A_{3}.(Y_{3} - \overline {Y})^{2}##
##=\large \frac {20*5}{12}## ## + 100(22.5 - 10.96^{2})##
##= 13525.25 cm^{4}##
##I_{xx} = 11048.28 + 1584.12 + 13525.5 = 26137.86 cm^{4}##
Moment of Inertia w.r.t Centroid Y-Y:
##I_{YY} = I_{YY1} + I_{YY2} + I_{YY3}##
##I_{YY1} = I_{G1 }+ A_{1}.X^{2}##
= ##I_{G1.Y} + A_{1}. (X_{1} - \overline X)^{2}## (Here ##I_{G1.X} = \large \frac{d.b^{3}}{12}##)
##= \large \frac {5*30^{3}}{12}## + ##(150)(15 - 15)^{2}##
## = 11250 cm^{4}##
##I_{YY2} = I_{G2} + A_{2}.X^{2}##
= ##I_{G2.Y} + A_{2}. (x^{2} - \overline X)^{2}##
= ##\large \frac {15*5^{3}}{12}## + ##(75)(15-15)^{2}##
= ##156.25 cm^{4}##
##I_{YY3} = I_{G3} + A_{3}.X^{2}##
= ##I_{G3.Y} + A_{3}. (x^{2} - \overline X)^{2}##
= ##\large \frac {5*20^{3}}{12}## + ##(100)(15-15)^{2}##
= ##3333.33 cm^{4}##
##I_{yy} = 11250 + 156.25 + 3333.33 = 14739.58 cm^{4}##
Sol: Here A1, A2 and A3 are the areas:
Centriod ; ##X_{C} = \large \frac {A_{1}X_{1} + A_{2}X_{2}+A_{3}X_{3}}{A_{1} + A{2}+ A_{3}}## ##= 15 cm##
Centriod ; ##Y_{C} = \large \frac {A_{1}Y_{1} + A_{2}Y_{2}+A_{3}Y_{3}}{A_{1} + A{2}+ A_{3}}## ##= 10.96 cm##
Moment of Inertia w.r.t Centroid X-X:
##I_{XX} = I_{XX1} + I_{XX2} + I_{XX3}##
##I_{XX1} = I_{G1.X} + A_{1}Y^{2}##
##= I_{G1.X} + A_{1}.(Y_{1} - \overline {Y})^{2}##
##= \large \frac {30*5}{12}## ##+ 150(25 - 10.96^{2})## (Here ##I_{G1.X} = \large \frac {b.d^3}{12})##
##= 11048.24 cm^{4}##
##I_{XX2} = I_{G2.X} + A_{2}Y^{2}##
##= I_{G1.X} + A_{2}.(Y_{2} - \overline {Y})^{2}##
##= \large \frac {5*15}{12}## ## + 75(12.5 - 10.96^{2})##
##=1584.12 cm^{4}##
##I_{XX3} = I_{G3.X} + A_{3}.Y^{2}##
##= I_{G3.X} + A_{3}.(Y_{3} - \overline {Y})^{2}##
##=\large \frac {20*5}{12}## ## + 100(22.5 - 10.96^{2})##
##= 13525.25 cm^{4}##
##I_{xx} = 11048.28 + 1584.12 + 13525.5 = 26137.86 cm^{4}##
Moment of Inertia w.r.t Centroid Y-Y:
##I_{YY} = I_{YY1} + I_{YY2} + I_{YY3}##
##I_{YY1} = I_{G1 }+ A_{1}.X^{2}##
= ##I_{G1.Y} + A_{1}. (X_{1} - \overline X)^{2}## (Here ##I_{G1.X} = \large \frac{d.b^{3}}{12}##)
##= \large \frac {5*30^{3}}{12}## + ##(150)(15 - 15)^{2}##
## = 11250 cm^{4}##
##I_{YY2} = I_{G2} + A_{2}.X^{2}##
= ##I_{G2.Y} + A_{2}. (x^{2} - \overline X)^{2}##
= ##\large \frac {15*5^{3}}{12}## + ##(75)(15-15)^{2}##
= ##156.25 cm^{4}##
##I_{YY3} = I_{G3} + A_{3}.X^{2}##
= ##I_{G3.Y} + A_{3}. (x^{2} - \overline X)^{2}##
= ##\large \frac {5*20^{3}}{12}## + ##(100)(15-15)^{2}##
= ##3333.33 cm^{4}##
##I_{yy} = 11250 + 156.25 + 3333.33 = 14739.58 cm^{4}##
Last edited: