Calculate Resultant of $g(x)=X^3+pX+q$

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Resultant
Click For Summary

Discussion Overview

The discussion centers on finding the discriminant of the cubic polynomial $g(x)=X^3+pX+q$ and involves the calculation of a determinant related to the resultant of the polynomial and its derivative. Participants explore the properties of the Sylvester matrix and its implications for the discriminant.

Discussion Character

  • Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • Some participants express a desire to find the discriminant of the polynomial $g(x)=X^3+pX+q$ using the resultant $Res(g,g')$ and the determinant of a specific matrix.
  • One participant expands the determinant across a row and presents a calculation resulting in $9q^2+2p^3$, questioning if this result is correct.
  • Another participant confirms the determinant calculation but expresses confusion regarding the definitions of $Res$ and $D(g(X))$, suggesting that $D(g(x))$ might refer to the discriminant and questioning the nature of the matrix presented.
  • A later reply indicates that the matrix provided is not the Sylvester matrix, noting that it should be a $5\times 5$ matrix for the two polynomials involved.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct form of the Sylvester matrix or the interpretation of the terms involved, indicating multiple competing views and unresolved questions regarding the calculations and definitions.

Contextual Notes

There is uncertainty regarding the definitions of $Res$ and $D(g(X))$, as well as the appropriate form of the Sylvester matrix for the polynomials in question. The discussion reflects a reliance on specific mathematical properties that may not be universally agreed upon.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

I want to find the discriminant of $g(x)=X^3+pX+q$.

$$Res(g,g')=(-1)^{\frac{3(3-1)}{2}} D(g(X)) \Rightarrow Res(g,g')=-D(g(X))$$

$$Res(g,g')=det\begin{bmatrix}
q & p & 0 & 1\\
0 & q & p & 0\\
p & 0 & 3 &0 \\
0 & p & 0 & 3
\end{bmatrix}$$

How can we find the above determinant? :confused:
 
Physics news on Phys.org
evinda said:
Hi! (Smile)

I want to find the discriminant of $g(x)=X^3+pX+q$.

$$Res(g,g')=(-1)^{\frac{3(3-1)}{2}} D(g(X)) \Rightarrow Res(g,g')=-D(g(X))$$

$$Res(g,g')=det\begin{bmatrix}
q & p & 0 & 1\\
0 & q & p & 0\\
p & 0 & 3 &0 \\
0 & p & 0 & 3
\end{bmatrix}$$

How can we find the above determinant? :confused:
Expanding the determinant across the third row:
[math] \left | \begin{matrix}q & p & 0 & 1\\ 0 & q & p & 0\\ p & 0 & 3 &0 \\ 0 & p & 0 & 3 \end{matrix} \right | = p \left | \begin{matrix} p & 0 & 1 \\ q & p & 0 \\ p & 0 & 3 \end{matrix} \right | + 3 \left | \begin{matrix} q & p & 1 \\ 0 & q & 0 \\ 0 & p & 3 \end{matrix} \right |[/math]
etc.

-Dan
 
topsquark said:
Expanding the determinant across the third row:
[math] \left | \begin{matrix}q & p & 0 & 1\\ 0 & q & p & 0\\ p & 0 & 3 &0 \\ 0 & p & 0 & 3 \end{matrix} \right | = p \left | \begin{matrix} p & 0 & 1 \\ q & p & 0 \\ p & 0 & 3 \end{matrix} \right | + 3 \left | \begin{matrix} q & p & 1 \\ 0 & q & 0 \\ 0 & p & 3 \end{matrix} \right |[/math]
etc.

-Dan

Calculating it, I found $9q^2+2p^3$. So, have I done something wrong? (Worried)

Because then it would be $D(g(X))=-9q^2-2p^3$ that does not stand... (Shake)
 
evinda said:
Calculating it, I found $9q^2+2p^3$. So, have I done something wrong? (Worried)

Because then it would be $D(g(X))=-9q^2-2p^3$ that does not stand... (Shake)
(shrugs) I can't help with the rest of the problem, but you got the determinant of the given matrix correct.

-Dan
 
evinda said:
Hi! (Smile)

I want to find the discriminant of $g(x)=X^3+pX+q$.

$$Res(g,g')=(-1)^{\frac{3(3-1)}{2}} D(g(X)) \Rightarrow Res(g,g')=-D(g(X))$$

$$Res(g,g')=det\begin{bmatrix}
q & p & 0 & 1\\
0 & q & p & 0\\
p & 0 & 3 &0 \\
0 & p & 0 & 3
\end{bmatrix}$$

How can we find the above determinant? :confused:
evinda said:
Calculating it, I found $9q^2+2p^3$. So, have I done something wrong? (Worried)

Because then it would be $D(g(X))=-9q^2-2p^3$ that does not stand... (Shake)

Hey! (Wave)

I'm confused about what you want to find.

The discriminant of a cubic polynomial? (Wondering)
That should be something like:
$$\Delta = 18abcd -4b^3d + b^2c^2 - 4ac^3 - 27a^2d^2$$

What does $Res$ represent? (Wondering)
If it were a $Residue$, I'd expect a function and a point as parameters.
What does $D(g(X))$ represent? I'd expect a derivative, but apparently you're making it a determinant. :confused:
 
Hi,

I suppose $D(g(x))$ is the discriminant and $Res(g,g')$ is the resultant of this two polynomials, given by the determinant of the Sylvester matrix, but this matrix you have is not $Sylv(g,g')$. Sylvester matrix of two polynomials is always a square matrix of order the sum of the degrees of the polynomials.

In this case, you should have a $5\times 5$ matrix
 

Similar threads

Replies
48
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
887
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K