I Calculate Ricci Scalar & Cosm. Const of AdS-Schwarzschild Metric in d-Dimensions

shinobi20
Messages
277
Reaction score
20
TL;DR Summary
How do you calculate the Ricci scalar and cosmological constant of an AdS-Schwarzschild black hole in ##d##-dimensions?
I know some basic GR and encountered the Schwarzschild metric as well as the Riemann tensor. It is known that for maximally symmetric spaces there is a corresponding Riemann tensor and thus Ricci scalar.

Question. How do you calculate the Ricci scalar ##R## and cosmological constant ##\Lambda## of an AdS-Schwarzschild black hole metric in ##d##-dimensions?

##ds^2 = \frac{L^2_{\rm{AdS}}}{z^2} \left( -f(z) dt^2 + \frac{dz^2}{f(z)} + \sum_{i=1}^d dx_i^2 \right)##

where ##L_{\rm{AdS}}## is the AdS radius.

I'm reading the article AdS CFT Duality User Guide by Makoto Natsuume and I'm just wondering how to find those quantities since there is a factor of ##f(z)## already present as opposed to the pure AdS case. The Riemann tensor and Ricci scalar for the maximally symmetric spaces are listed in p.98 of the article.
 
Physics news on Phys.org
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top