I Calculate Ricci Scalar & Cosm. Const of AdS-Schwarzschild Metric in d-Dimensions

shinobi20
Messages
277
Reaction score
20
TL;DR Summary
How do you calculate the Ricci scalar and cosmological constant of an AdS-Schwarzschild black hole in ##d##-dimensions?
I know some basic GR and encountered the Schwarzschild metric as well as the Riemann tensor. It is known that for maximally symmetric spaces there is a corresponding Riemann tensor and thus Ricci scalar.

Question. How do you calculate the Ricci scalar ##R## and cosmological constant ##\Lambda## of an AdS-Schwarzschild black hole metric in ##d##-dimensions?

##ds^2 = \frac{L^2_{\rm{AdS}}}{z^2} \left( -f(z) dt^2 + \frac{dz^2}{f(z)} + \sum_{i=1}^d dx_i^2 \right)##

where ##L_{\rm{AdS}}## is the AdS radius.

I'm reading the article AdS CFT Duality User Guide by Makoto Natsuume and I'm just wondering how to find those quantities since there is a factor of ##f(z)## already present as opposed to the pure AdS case. The Riemann tensor and Ricci scalar for the maximally symmetric spaces are listed in p.98 of the article.
 
Physics news on Phys.org
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top