Calculate the area of this pond with functions given for the perimeter

Click For Summary
To calculate the area of the pond, the integral of the upper function f(x) from -5 to 5 must be adjusted by subtracting the integral of the lower function g(x). This subtraction accounts for the areas below the pond that are above the x-axis, ensuring only the area between the two curves is considered. The area can be visualized as vertical strips where the height at each x is determined by the difference f(x) - g(x). Thus, the correct expression for the area is the definite integral of (f(x) - g(x)) over the specified interval. Understanding this subtraction is key to accurately finding the pond's area.
tomwilliam
Messages
142
Reaction score
3
Homework Statement
See image below. Trying to calculate area of a pond using the functions given for the upper and lower boundaries
Relevant Equations
The equation referred to in the booklet is the definite integral from a to b of f(x) wrt dx = F(b) - F(a)
202f69e6-44cd-42d3-9cd8-9991e47506e5.JPG


So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral of g(x).
Any help much appreciated!
Thanks
 
Physics news on Phys.org
tomwilliam said:
Homework Statement: See image below. Trying to calculate area of a pond using the functions given for the upper and lower boundaries
Relevant Equations: The equation referred to in the booklet is the definite integral from a to b of f(x) wrt dx = F(b) - F(a)

View attachment 346662

So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral of g(x).
Any help much appreciated!
Thanks
To get the blue area, you need to subtract from the ##\int_{-5}^5 f(x) dx## the areas ##a## and ##b## and to add to it the area ##c##:
1717884625562.png

This is what subtracting ##\int_{-5}^5 g(x) dx## does.
 
Another way to understand the same result is to imagine the area of the pond as a bunch of [blue-shaded] vertical strips, all side by side.

The ##y## extent of the strip at ##x## is given by ##f(x) - g(x)##. The total area of all the strips is then obviously ##\int_{-5}^{5} ( f(x) - g(x) )\ dx##.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 21 ·
Replies
21
Views
6K
Replies
1
Views
1K
Replies
2
Views
2K