Calculate the Length & Potential Energy of a Sliding Box on a Ramp

Click For Summary

Discussion Overview

The discussion revolves around calculating the length of a ramp and the potential energy loss of a box sliding down the ramp, incorporating concepts from mechanics, energy conservation, and friction. Participants seek assistance with the calculations and methodologies involved.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a scenario involving a box sliding down a ramp and requests help with calculations related to the ramp's length and potential energy loss.
  • Several participants suggest using energy conservation principles, specifically the equation involving gravitational potential energy and work done by friction to find the ramp length.
  • Some participants express confusion about using Newton's second law and suggest focusing on the energy equation instead.
  • One participant claims to have calculated the ramp length as 100m, while another states the textbook answer is 2.10m, indicating a discrepancy in results.
  • Another participant discusses deriving results from the work-energy theorem and provides a formula for the ramp length based on the final velocity and friction.
  • There is a reiteration of the energy conservation approach, emphasizing the initial potential energy and the work done against friction.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct method for solving the problem, with some advocating for energy methods while others reference Newton's laws. Discrepancies in calculated ramp lengths further highlight the lack of agreement.

Contextual Notes

Participants express varying levels of familiarity with the methods discussed, indicating that some foundational concepts may not be fully understood by all contributors. The discussion includes multiple approaches to the problem, but no definitive resolution is reached.

Who May Find This Useful

This discussion may be useful for students learning about mechanics, energy conservation, and friction in physics, particularly those seeking to understand different approaches to solving related problems.

Shah 72
MHB
Messages
274
Reaction score
0
A ramp rises 10cm for every 80cm along the sloping surface. A box of mass 50 kg slides down the ramp starting from rest at the top of the ramp. The coefficient of friction between the ramp and the box is 0.03 and no other resistance acts.
The box is traveling at 2 m/s when it reaches the bottom of the ramp.
Find the length of the ramp

Find the loss in the potential energy of the box.
I don't understand how to calculate. Pls help.
 
Mathematics news on Phys.org
$\theta$ = ramp angle
$\Delta x$ = length of the ramp

you are given info that can be used to determine $\sin{\theta}$

$mg \cdot \Delta x \sin{\theta} - \mu mg\cos{\theta} \cdot \Delta x = \dfrac{1}{2}m v_f^2$
 
skeeter said:
$\theta$ = ramp angle
$\Delta x$ = length of the ramp

you are given info that can be used to determine $\sin{\theta}$

$mg \cdot \Delta x \sin{\theta} - \mu mg\cos{\theta} \cdot \Delta x = \dfrac{1}{2}m v_f^2$
Thank you!
 
skeeter said:
$\theta$ = ramp angle
$\Delta x$ = length of the ramp

you are given info that can be used to determine $\sin{\theta}$

$mg \cdot \Delta x \sin{\theta} - \mu mg\cos{\theta} \cdot \Delta x = \dfrac{1}{2}m v_f^2$
skeeter said:
$\theta$ = ramp angle
$\Delta x$ = length of the ramp

you are given info that can be used to determine $\sin{\theta}$

$mg \cdot \Delta x \sin{\theta} - \mu mg\cos{\theta} \cdot \Delta x = \dfrac{1}{2}m v_f^2$
I tried doing but not getting the ans.
m = 50 kg, coefficient of friction is 0.03
F= m×a 500sin theta- 0.03 × 500 cos theta= 50a
I don't know how to calculate the length of the ramp.
Pls can you help.
 
Why are you messing around with Newton’s 2nd law? … solve the energy equation I posted for $\Delta x$, then substitute in your given values.
 
skeeter said:
Why are you messing around with Newton’s 2nd law? … solve the energy equation I posted for $\Delta x$, then substitute in your given values.
I haven't yet learned this method.
So I get distance = 100m
But the textbook ans says 2.10m
 
Shah 72 said:
I haven't yet learned this method.
This is just derived from F= ma only
$F= m v \frac{dv}{ds}$
$ F ds = m v dv $
integrate this you will get the result also known as Work energy theorem.
 
Shah 72 said:
I haven't yet learned this method.
So I get distance = 100m
But the textbook ans says 2.10m

well, it's about time you learned ...

let the bottom of the ramp be the zero for gravitational potential energy

(initial quantity of mechanical energy) - (work done by friction) = (final quantity of mechanical energy)

the block starts at rest, so the initial quantity of mechanical energy is gravitational potential energy, $mgh_0$ where $h_0 = \Delta x \sin{\theta}$

work done by kinetic energy is $f \cdot \Delta x = \mu mg\cos{\theta} \Delta x$

final quantity of mechanical energy is strictly kinetic, $K = \dfrac{1}{2}mv_f^2$$mg \Delta x \sin{\theta} - \mu mg \cos{\theta} \Delta x = \dfrac{1}{2}mv_f^2$

$\Delta x(g \sin{\theta} - \mu g \cos{\theta}) = \dfrac{1}{2}v_f^2$

$\color{red} \Delta x = \dfrac{v_f^2}{2g(\sin{\theta} - \mu\cos{\theta})}$

I get $\Delta x = 2.1 \, m$Let's check by messing with Newton's 2nd ...

$a = \dfrac{F_{net}}{m} = \dfrac{mg \sin{\theta} - \mu mg \cos{\theta}}{m}$

$a = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = v_0^2 + 2a \Delta x \implies \Delta x = \dfrac{v_f^2 - v_0^2}{2a} $

$\color{red} \Delta x = \dfrac{v_f^2}{2g(\sin{\theta} - \mu \cos{\theta})}$

Well ... I'll be dipped in dog :poop:
 
skeeter said:
well, it's about time you learned ...

let the bottom of the ramp be the zero for gravitational potential energy

(initial quantity of mechanical energy) - (work done by friction) = (final quantity of mechanical energy)

the block starts at rest, so the initial quantity of mechanical energy is gravitational potential energy, $mgh_0$ where $h_0 = \Delta x \sin{\theta}$

work done by kinetic energy is $f \cdot \Delta x = \mu mg\cos{\theta} \Delta x$

final quantity of mechanical energy is strictly kinetic, $K = \dfrac{1}{2}mv_f^2$$mg \Delta x \sin{\theta} - \mu mg \cos{\theta} \Delta x = \dfrac{1}{2}mv_f^2$

$\Delta x(g \sin{\theta} - \mu g \cos{\theta}) = \dfrac{1}{2}v_f^2$

$\color{red} \Delta x = \dfrac{v_f^2}{2g(\sin{\theta} - \mu\cos{\theta})}$

I get $\Delta x = 2.1 \, m$Let's check by messing with Newton's 2nd ...

$a = \dfrac{F_{net}}{m} = \dfrac{mg \sin{\theta} - \mu mg \cos{\theta}}{m}$

$a = g(\sin{\theta} - \mu \cos{\theta})$

$v_f^2 = v_0^2 + 2a \Delta x \implies \Delta x = \dfrac{v_f^2 - v_0^2}{2a} $

$\color{red} \Delta x = \dfrac{v_f^2}{2g(\sin{\theta} - \mu \cos{\theta})}$

Well ... I'll be dipped in dog :poop:
Thanks a lotttt!
 
  • #10
DaalChawal said:
This is just derived from F= ma only
$F= m v \frac{dv}{ds}$
$ F ds = m v dv $
integrate this you will get the result also known as Work energy theorem.
Thanks!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
948
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K