# Calculate the momentum of a 249 MeV pion

• catkin
In summary, the conversation is about a question from an advanced physics book that involves calculating the possible quark content and momentum of different particles. The discussion also touches on the use of natural units and the concept of isospin triplets.
catkin

## Homework Statement

The question is from "Advanced Physics" by Adams and Allday. It is from section 9 "The Physics of Particles", "Practice Exam Questions". It is question 10. The level of this study is between school and University.

I am uncertain about the answer to part c, ii (3rd meson) and iv.

The whole part c question is given in case the context is relevant.

c) The K+ is a meson with strangeness +1. One of its common decay modes is K+ → π+ + π0. Pions are not strange particles.

i. Name the type of interaction responsible for the K+ → π+ + π0 decay.

ii. Table 9.4 gives the properties of the relevant quarks. Deduce the possible quark content of the K+, π+ and π0
• u, charge +2/3, baryon number 1/3, strangeness 0
• d, charge -1/3, baryon number 1/3, strangeness 0
• s, charge -1/3, baryon number 1/3, strangeness -1
iii. The rest mass of a proton is 938 MeV/c2. The K+ rest mass = 0.53 proton masses, and the π+ rest mass = π0 rest mass = 0.15 proton masses. Assuming that the K+ is stationary when it decays, show that the total energy of each pion produced in the decay is 249 MeV.

iv.Given that E2 = m02c4 + p2c2, calculate the momentum of each pion. Express your answer in units of MeV/c.

## Homework Equations

Given in the question.

## The Attempt at a Solution

ii. Only unsure about the possible quark content of the π0. Underlining is used below instead of barover to indicate anti-quark.

The π0 is a meson with charge 0 and strangeness 0.
Being a meson it is composed of a quark and an antiquark.
Strangeness 0 so either no s or ss.
Charge 0 so could be ss, dd. or uu.
Quark content of π0: ss, dd. or uu.

References confirmed dd. or uu but not ss. Is ss wrong and, if so, why?

iv.
E2 = m02c4 + p2c2

Using "natural" units and values given in the question this reduces to

p = sqrt(249^2 - (0.15 * 938))
= 249 MeV/c ct3sf.

Is this correct? I am not familiar with using natural units so have some doubt about whether it's OK just to discard all the "c"s like that. If it is correct, is it just coincidence that the momentum is numerically the same as the energy?

Best

Charles

catkin said:
ii. Only unsure about the possible quark content of the π0. Underlining is used below instead of barover to indicate anti-quark.

(snip)

References confirmed dd. or uu but not ss. Is ss wrong and, if so, why?

It's true that there are no $s$ quarks in the $\pi^0$ wavefunction. But I suppose that if all you know about the pions is their charge then it's not possible to rule them out. What you really need to know about the pions is that they form an isospin triplet and that the only possible quark content for $\pi^+$ is $u\overline{d}$.

iv.
E2 = m02c4 + p2c2

Using "natural" units and values given in the question this reduces to

p = sqrt(249^2 - (0.15 * 938))
= 249 MeV/c ct3sf.

Is this correct?

When I do the above calculation I get p=205 MeV/c.

Thanks Tom

OK with ss not being possible because of spin considerations but can you recheck the calculation? I just pasted sqrt(249^2 - (0.15 * 938)) into gcalctool 5.22.3 and got 248.71730941 again ...

Best

Charles

You forgot to square the mass inside the square root sign.

Thanks again Tom

Oops! I tried to work out whether sqrt(E^2 - m0) is E or whether it is just a coincidence that it gives the same number. Presumably coincidence because the erroneous calculation is dimensionally inconsistent.

Best

Charles

## 1. How is the momentum of a pion calculated?

The momentum of a pion can be calculated using the formula p = mv, where p is the momentum, m is the mass of the pion, and v is its velocity.

## 2. What is the unit of measurement for momentum?

The unit of measurement for momentum is kilogram meters per second (kg·m/s) in the SI system. In particle physics, it is often expressed in units of gigaelectronvolts (GeV) or megaelectronvolts (MeV).

## 3. What is the mass of a 249 MeV pion?

The mass of a pion can vary depending on its type. A 249 MeV pion is most likely a neutral pion, which has a mass of approximately 135 MeV/c^2.

## 4. How does the momentum of a pion compare to other subatomic particles?

The momentum of a pion can vary depending on its energy and type. Generally, pions have lower momentum compared to heavier particles such as protons and neutrons. However, they have higher momentum than electrons and neutrinos.

## 5. What is the significance of calculating the momentum of a pion?

Calculating the momentum of a pion allows scientists to understand the behavior and interactions of subatomic particles. It is an important factor in particle physics experiments and can provide valuable information about the structure of matter and the fundamental forces of the universe.

• Advanced Physics Homework Help
Replies
4
Views
483
• Advanced Physics Homework Help
Replies
3
Views
2K
• Advanced Physics Homework Help
Replies
10
Views
3K
• Introductory Physics Homework Help
Replies
1
Views
2K
• Quantum Physics
Replies
1
Views
846
• Advanced Physics Homework Help
Replies
6
Views
7K
• Advanced Physics Homework Help
Replies
1
Views
2K
• Advanced Physics Homework Help
Replies
1
Views
2K
• High Energy, Nuclear, Particle Physics
Replies
31
Views
2K
• Advanced Physics Homework Help
Replies
6
Views
4K