Calculate the voltage drop of the train (Picture included)

Click For Summary
SUMMARY

The discussion centers on calculating the voltage drop across a train in an electrical circuit. The initial calculation by the user incorrectly considered only one resistor (0.140 ohms) instead of the total resistance in the circuit. The correct approach involves calculating the total resistance (5 ohms) and then determining the voltage drop across the train by subtracting the voltage drops from all resistors in the circuit. The final voltage drop across the train is calculated to be 1444.8 volts, aligning with the teacher's guidance.

PREREQUISITES
  • Understanding of Ohm's Law (V=IR)
  • Basic knowledge of electrical circuits and resistance
  • Familiarity with series circuit calculations
  • Ability to perform voltage drop calculations
NEXT STEPS
  • Study series circuit analysis techniques
  • Learn about calculating total resistance in electrical circuits
  • Explore practical applications of Ohm's Law in real-world scenarios
  • Investigate voltage drop calculations in various electrical components
USEFUL FOR

Students studying electrical engineering, educators teaching circuit theory, and anyone interested in understanding voltage drop calculations in electrical systems.

Simmer
Messages
2
Reaction score
0
Hello guys, so I had a homework and I couldn't understand the point of my teacher. The question goes like this:

http://desmond.imageshack.us/Himg3/scaled.php?server=3&filename=21976607.jpg&res=medium

So the question is,
"Calculate the voltage drop over the TRAIN when it is at the position indicated"

Alright so he asked for the voltage that goes to the train, therefore,
V=IR

V=1500
I=300
R=The resistor the current will go through before it hits the train which is 0.140

V=300*0.140 ----> V=42
So the Voltage that will go through the train is going to be 1500-42 ------> v=1458


My teacher said it's wrong, I should calculate the total resistance of the circle which is 0.140+0.044 and then multiply by the current, but I don't understand! the question asked about the resistance over the train only not over the whole circle, anyone can help?
 
Last edited by a moderator:
Physics news on Phys.org
Simmer said:
Hello guys, so I had a homework and I couldn't understand the point of my teacher. The question goes like this:

http://desmond.imageshack.us/Himg3/scaled.php?server=3&filename=21976607.jpg&res=medium

So the question is,
"Calculate the voltage drop over the TRAIN when it is at the position indicated"

Alright so he asked for the voltage that goes to the train, therefore,
V=IR

V=1500
I=300
R=The resistor the current will go through before it hits the train which is 0.140

V=300*0.140 ----> V=42
So the Voltage that will go through the train is going to be 1500-42 ------> v=1458


My teacher said it's wrong, I should calculate the total resistance of the circle which is 0.140+0.044 and then multiply by the current, but I don't understand! the question asked about the resistance over the train only not over the whole circle, anyone can help?
I think you mean that he asked for the voltage over the train, that is, the voltage someone on the train would measure if he had a meter and measured from the "top" of the train (overhead wire) to the "bottom" of the train (track rail). That is the potential drop across the train. It happens to be what's left of the total potential (1500V) when all the drops due to other resistances in the whole circuit path are accounted for. Your teacher is correct.
 
Last edited by a moderator:
gneill said:
I think you mean that he asked for the voltage over the train, that is, the voltage someone on the train would measure if he had a meter and measured from the "top" of the train (overhead wire) to the "bottom" of the train (track rail). That is the potential drop across the train. It happens to be what's left of the total potential (1500V) when all the drops due to other resistances in the whole circuit path are accounted for. Your teacher is correct.


Hello

Thank you for your help, now I understand it

If we calculate the total resistance of the whole circle, it will be

R total=V/I ----> R total =1500/300 ----> R total =5
Now by taking out the resistor 0.140 and the resistor 0.044 from the total resistance, it will be 4.816, this is the resistance of the engine of the train, now calculating the Voltage
V=IR -----> V= 4.816 * 300 ------> Voltage drop over the train engine is going to be 1444.8 which is the same answer as my teacher gave me


Thank you very much for your help!
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
13K