Calculate thickness of a pressurized vessel

  • Thread starter Thread starter gioscarab
  • Start date Start date
  • Tags Tags
    Thickness Vessel
AI Thread Summary
The discussion focuses on determining the appropriate thickness for an aluminum pressurized vessel with an internal pressure of 0.125 bar and an external pressure of 0 bar. Key considerations include the maximum permissible pressure, which may require planning for potential leaks and ensuring the design does not exceed safety limits. A formula for estimating wall thickness is provided, indicating that a stress of 10,000 psi results in a minimal thickness of approximately 0.005 inches. The complexity of the vessel's end caps is noted, with a recommendation for spherical shapes to minimize material thickness. Overall, the conversation highlights the challenges of designing lightweight yet structurally sound pressurized vessels.
gioscarab
Messages
3
Reaction score
0
Hi guys.
I am trying to figure out how thick should be an aluminium pressurized vessel with a internal pressure of 0.125 pa or 1/8 bar. The shape of the box is a cylinder 130cm base x 170cm height. The maximum pressure difference is 0.125 bar inside -> 0 bar outside.
I know that i need to know the joint efficiency of the vessel, but i would estimate that generally.
 
Last edited:
Engineering news on Phys.org
Sorry i made a mistake writing data:
Internal pressure: 0.125 bar
Minimum external pressure: 0 bar
I forgot: The vessel will be made by laser cutted aluminium sheet, welded with TIG technology.
Please help.
 
I am assuming gauge pressure. So the outside is at normal air pressure and not a vacuum?

0.125 bar might be the operating pressure but what is the maximum permissible pressure? And what do you intend to design to make sure the maximum pressure is not exceeded?

If the pressure is absolute (i.e. your 0 bar is actually a vacuum) then you might want to plan for a leak to atmosphere from outside the system and, therefore, a pressure of 1 bar in the vessel.

If it will not exceed 0.5 bar then it does not fall into the EU definition of a Simple Pressure Vessel.
 
Hi I am very pleased by your answer.
I am intellectually designing only as a proof of concept a vessel that has a minumum internal pressure of 0.125 bar (like 10.000m in atmosphere) with a minimum outside pressure of 0.012 bar so near vacuum. The maximum permissible pressure difference from inside to outside, with always less pressure outside could be 1.5x 0.125 bar -> 0.012 bar. I also propose aluminium material, and also TIG tenchnology for welding.

My goal is to estimate weight of the bare vessel structure.
I am not considering g forces and stress to put on the object, i am only need a estimation for thickness, after that i could estimate also weight and so on, i am stuck here :P
 
Last edited:
The wall thickness for a cylindrical tube can be estimated from S = Pr/t
where
S = stress
P = Pressure (internal)
r = radius
t = thickness

Assuming a stress of 10,000 psi, the wall thickness is only around 0.005", so about the thickness of a human hair. The ends of the cylindrical vessel however, will be a bit more difficult if you have flat heads. To minimize thickness of the head material, they need to be spherical.

Basically, you end up with a balloon made out of aluminum. You could use aluminum foil, but there would be no way to weld it together. Glue would work. But the resulting balloon would have no structural strength and would collapse and tear without pressure inside it. Note that the Atlas rocket and its upper stage Centaur was actually built this way. They were a lot thicker but were rated for much higher pressure as well. The similarity though is that both your balloon and this rocket would collapse under their own weight without pressure inside.
 
I recall a similar problem posed many years ago (late 70s) that was quite similar except for scale.

The pressure was 14.7PSI, and the diameter of the cylinder was a kilometer as I recall.

(yeah, it was in regards to a Gerard O'Neill space habitat).IIRC, the thickness turned out to be around a meter, but I don't remember if that had a safety factor.(and after 30 some years, I might be misremembering some of the details)

Fun recalling an old problem, thanks for the memories!
 
Hi all, I have a question. So from the derivation of the Isentropic process relationship PV^gamma = constant, there is a step dW = PdV, which can only be said for quasi-equilibrium (or reversible) processes. As such I believe PV^gamma = constant (and the family of equations) should not be applicable to just adiabatic processes? Ie, it should be applicable only for adiabatic + reversible = isentropic processes? However, I've seen couple of online notes/books, and...
Thread 'How can I find the cleanout for my building drain?'
I am a long distance truck driver, but I recently completed a plumbing program with Stratford Career Institute. In the chapter of my textbook Repairing DWV Systems, the author says that if there is a clog in the building drain, one can clear out the clog by using a snake augur or maybe some other type of tool into the cleanout for the building drain. The author said that the cleanout for the building drain is usually near the stack. I live in a duplex townhouse. Just out of curiosity, I...
I have an engine that uses a dry sump oiling system. The oil collection pan has three AN fittings to use for scavenging. Two of the fittings are approximately on the same level, the third is about 1/2 to 3/4 inch higher than the other two. The system ran for years with no problem using a three stage pump (one pressure and two scavenge stages). The two scavenge stages were connected at times to any two of the three AN fittings on the tank. Recently I tried an upgrade to a four stage pump...
Back
Top