Calculate Upper Bound for $\displaystyle a_{n}$ in Binomial Limit Evaluation

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Binomial Limit
Click For Summary
SUMMARY

The evaluation of the limit $\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=0}\frac{1}{\binom{n}{k}}$ leads to the definition of $a_{n} = \sum^{n}_{k=0}\frac{1}{\binom{n}{k}}$. The discussion highlights that for $2 \leq k \leq n-2$, the binomial coefficient satisfies ${n\choose k} \geqslant {n\choose 2} = \frac{1}{2}n(n-1)$. Consequently, the upper bound for $a_n$ can be estimated by analyzing the sum $\sum^{n-2}_{k=2}\frac{1}{\binom{n}{k}}$, which contains $n-3$ terms, each less than or equal to $\frac{2}{n(n-1)}$. This leads to a definitive upper bound for $a_n$ as $2 + \frac{2}{n}$.

PREREQUISITES
  • Understanding of binomial coefficients, specifically ${n\choose k}$
  • Familiarity with limits in calculus
  • Basic knowledge of summation notation
  • Ability to manipulate inequalities in mathematical expressions
NEXT STEPS
  • Study the properties of binomial coefficients in combinatorics
  • Learn about convergence and divergence of series in calculus
  • Explore techniques for estimating sums involving binomial coefficients
  • Investigate advanced limit evaluation methods in mathematical analysis
USEFUL FOR

Mathematicians, students studying calculus and combinatorics, and anyone interested in evaluating limits involving binomial coefficients.

juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=0}\frac{1}{\binom{n}{k}}$ is

I have tried like this way::

Let $\displaystyle a_{n} = \sum^{n}_{k=0}\frac{1}{\binom{n}{k}} = \frac{1}{\binom{n}{0}}+\frac{1}{\binom{n}{1}}+\sum^{n-2}_{k=2}\frac{1}{\binom{n}{k}}+\frac{1}{\binom{n}{n-1}}+\frac{1}{\binom{n}{n}}\geq 2+\frac{2}{n}$

Now I did not understand How can I calculate upper bound for $a_{n}$

Thanks
 
Physics news on Phys.org
jacks said:
Evaluation of $\displaystyle \lim_{n\rightarrow \infty}\sum^{n}_{k=0}\frac{1}{\binom{n}{k}}$ is

I have tried like this way::

Let $\displaystyle a_{n} = \sum^{n}_{k=0}\frac{1}{\binom{n}{k}} = \frac{1}{\binom{n}{0}}+\frac{1}{\binom{n}{1}}+\sum^{n-2}_{k=2}\frac{1}{\binom{n}{k}}+\frac{1}{\binom{n}{n-1}}+\frac{1}{\binom{n}{n}}\geq 2+\frac{2}{n}$

Now I did not understand How can I calculate upper bound for $a_{n}$
Notice that ${n\choose k} \geqslant {n\choose 2} = \frac12n(n-1)$ for $2\leqslant k\leqslant n-2$. So the sum $$\sum^{n-2}_{k=2}\frac{1}{n\choose k}$$ has $n-3$ terms, each of which is $\leqslant \frac2{n(n-1)}.$ That gives you an estimate for the upper bound of $a_n.$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K