- #1
Lo.Lee.Ta.
- 217
- 0
1. Find the volume between y-10=x and y2 -6y =x, rotated around x=1.
2. R= y2 -6y -1
r= y-10 -1
∫2 to 5 of [([itex]\pi[/itex](y2 -6y -1)2) - [itex]\pi[/itex](y - 11)2]
∫[itex]\pi[/itex][y4 - 12y3 + 4y2 + 12y + 1] - [itex]\pi[/itex][y2 - 22y + 121]dy
= [itex]\pi[/itex][y5/5 - 12y4/4 + 4y3/3 +122/2 +y] - [itex]\pi[/itex][y3/3 - 22y2/2 + 121y] |2 to 5
...LONG SUBSTITUTION...
= -928.33[itex]\pi[/itex] - 371.67[itex]\pi[/itex] + 4.93[itex]\pi[/itex] + 200.67[itex]\pi[/itex]
= -1094.4[itex]\pi[/itex]
...Is this the right answer...? I don't really think it's right because it's negative!
But what am I doing wrong here? :(
Thanks SO much for your help! :D
2. R= y2 -6y -1
r= y-10 -1
∫2 to 5 of [([itex]\pi[/itex](y2 -6y -1)2) - [itex]\pi[/itex](y - 11)2]
∫[itex]\pi[/itex][y4 - 12y3 + 4y2 + 12y + 1] - [itex]\pi[/itex][y2 - 22y + 121]dy
= [itex]\pi[/itex][y5/5 - 12y4/4 + 4y3/3 +122/2 +y] - [itex]\pi[/itex][y3/3 - 22y2/2 + 121y] |2 to 5
...LONG SUBSTITUTION...
= -928.33[itex]\pi[/itex] - 371.67[itex]\pi[/itex] + 4.93[itex]\pi[/itex] + 200.67[itex]\pi[/itex]
= -1094.4[itex]\pi[/itex]
...Is this the right answer...? I don't really think it's right because it's negative!
But what am I doing wrong here? :(
Thanks SO much for your help! :D