w/ respect to x, top function - bottom function
$\displaystyle \int_{-1}^0 9 - 9^{-x} \, dx + \int_0^2 9 - 3^x \, dx$
integral w/respect to y is ok and it can be simplified ...
$\displaystyle \dfrac{3}{2\ln{3}} \int_1^9 \ln{y} \, dy$
secant function integral is set up correctly ... antiderivative is rather easy to see if you recognize the chain rule