Calculating Chemical Potential from Energy Derivatives

Click For Summary
The discussion focuses on calculating the chemical potential from energy derivatives in a fluid system with a uniform particle distribution. The user attempts to derive the energy at a height using hydrostatic pressure but struggles to incorporate the number of particles, N, into their calculations. They mention the relationship between chemical potential and pressure for an ideal gas, highlighting that at constant temperature, the derivative of chemical potential with respect to pressure is equal to volume. The conversation also references the barotropic equation relating pressure and height in the context of an ideal gas. Overall, the thread emphasizes the complexities of deriving chemical potential from energy in fluid systems.
GravityX
Messages
19
Reaction score
1
Homework Statement
Show that for a fluid column the chemical potential as a function of height can be written as follows ## \mu_h=\mu_0+mgh##
Relevant Equations
none
Hi

Unfortunately, I can't get on with the following task.

The system looks like this

Bildschirmfoto 2022-12-05 um 20.51.34.png


it is divided in such a way that the same number of particles is present in each ##\epsilon## section. I am now to determine the energy ##E(P_h,V_h,N)## at the height h using the energy ##h=0## i.e. ##E_0(P_h,V_h,N)## and with this I am then to derive the above equation for the chemical potential.

I would now have simply derived the energy using the hydrostatic pressure equation ##P=\rho gh+P_0## by simply multiplying the equation by the volume ##V_h##, i.e. ##PV_h=\rho ghV_h+P_0V_h=mgh+P_0V_h=U_h+U_0##.

Now I'm getting nowhere, unfortunately, because to get the chemical potential I would have to derive the energy according to N, so ##\mu=\frac{\partial U}{\partial N}## unfortunately there is no N in the above equation.
 
Physics news on Phys.org
Are you dealing with the chemical potential of a component in an ideal gas mixture?
 
The task only says fluid (gas or liquid), so it is not explicitly mentioned. It then goes on to say

The fluid is in equilibrium, homogeneous in temperature, and consists of one type of particle with mass m
 
Well, at constant temperature, $$\frac{d\mu}{dP}=V$$For an ideal gas, this becomes: $$\frac{d\mu}{dP}=\frac{RT}{P}$$Furthermore, for an ideal gas, from the baratropic equation, $$\frac{dP}{dh}=-\rho g=-\frac{PM}{RT}$$where M is the molecular weight.
 
Thanks Chestermiller for your help 👍 , your derivation also helped me with the second task :smile:
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
44
Views
6K