MHB Calculating $\displaystyle \lim_{x\to 0}$ Complex Limit

Click For Summary
The limit $\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$ is evaluated using L'Hospital's Rule due to the indeterminate form $\frac{0}{0}$. Repeated application of L'Hospital's Rule leads to a series of simplifications. An alternative approach using series expansion ultimately yields the same result. The final calculated limit is $\frac{1}{9}$. This demonstrates the effectiveness of both L'Hospital's Rule and series expansion in solving complex limits.
Guest2
Messages
192
Reaction score
0
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$

How do you calculate this one?

L'hopital gives me

$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$
 
Physics news on Phys.org
Guest said:
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$

How do you calculate this one?

L'hopital gives me

$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$

This is another $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$ indeterminate form, so use L'Hospital's Rule again. If you keep getting indeterminate forms, keep using it...
 
Prove It said:
This is another $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$ indeterminate form, so use L'Hospital's Rule again. If you keep getting indeterminate forms, keep using it...
Yeah, but this time you have to use it like four times! :mad:

I got it solved by series expansion, though, so all is good. :)
 
$$\begin{align*}\lim_{x\to0}\dfrac{x^2-\sin^2x}{\tan3x^4}&=\lim_{x\to0}
\dfrac{x^2-\sin^2x}{\sin3x^4}\cdot\lim_{x\to0}\cos3x^4 \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3\cos3x^4} \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3} \\
&=\lim_{x\to0}\dfrac{2-2\cos2x}{36x^2} \\
&=\lim_{x\to0}\dfrac{4\sin2x}{72x} \\
&=\lim_{x\to0}\dfrac{8\cos2x}{72} \\
&=\dfrac19\end{align*}$$
 
greg1313 said:
$$\begin{align*}\lim_{x\to0}\dfrac{x^2-\sin^2x}{\tan3x^4}&=\lim_{x\to0}
\dfrac{x^2-\sin^2x}{\sin3x^4}\cdot\lim_{x\to0}\cos3x^4 \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3\cos3x^4} \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3} \\
&=\lim_{x\to0}\dfrac{2-2\cos2x}{36x^2} \\
&=\lim_{x\to0}\dfrac{4\sin2x}{72x} \\
&=\lim_{x\to0}\dfrac{8\cos2x}{72} \\
&=\dfrac19\end{align*}$$
Very nice, thank you.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K