Calculating $\displaystyle \lim_{x\to 0}$ Complex Limit

  • Context: MHB 
  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Limit Sine Tangent
Click For Summary
SUMMARY

The limit $\displaystyle \lim_{x\to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$ can be effectively calculated using L'Hôpital's Rule and series expansion techniques. Initially, applying L'Hôpital's Rule reveals a repeated $\displaystyle \frac{0}{0}$ indeterminate form, necessitating multiple iterations. Ultimately, the limit converges to $\frac{1}{9}$ through a series of transformations, including the use of trigonometric identities and simplifications.

PREREQUISITES
  • Understanding of L'Hôpital's Rule for evaluating limits
  • Familiarity with Taylor series expansions for trigonometric functions
  • Knowledge of indeterminate forms in calculus
  • Basic proficiency in manipulating limits involving trigonometric functions
NEXT STEPS
  • Study advanced applications of L'Hôpital's Rule in calculus
  • Learn about Taylor series expansions for $\sin x$ and $\tan x$
  • Explore other methods for evaluating limits, such as the Squeeze Theorem
  • Investigate the behavior of limits involving higher-order polynomials and trigonometric functions
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and limit evaluation techniques, as well as educators looking for examples of complex limit calculations.

Guest2
Messages
192
Reaction score
0
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$

How do you calculate this one?

L'hopital gives me

$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$
 
Physics news on Phys.org
Guest said:
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$

How do you calculate this one?

L'hopital gives me

$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$

This is another $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$ indeterminate form, so use L'Hospital's Rule again. If you keep getting indeterminate forms, keep using it...
 
Prove It said:
This is another $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$ indeterminate form, so use L'Hospital's Rule again. If you keep getting indeterminate forms, keep using it...
Yeah, but this time you have to use it like four times! :mad:

I got it solved by series expansion, though, so all is good. :)
 
$$\begin{align*}\lim_{x\to0}\dfrac{x^2-\sin^2x}{\tan3x^4}&=\lim_{x\to0}
\dfrac{x^2-\sin^2x}{\sin3x^4}\cdot\lim_{x\to0}\cos3x^4 \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3\cos3x^4} \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3} \\
&=\lim_{x\to0}\dfrac{2-2\cos2x}{36x^2} \\
&=\lim_{x\to0}\dfrac{4\sin2x}{72x} \\
&=\lim_{x\to0}\dfrac{8\cos2x}{72} \\
&=\dfrac19\end{align*}$$
 
greg1313 said:
$$\begin{align*}\lim_{x\to0}\dfrac{x^2-\sin^2x}{\tan3x^4}&=\lim_{x\to0}
\dfrac{x^2-\sin^2x}{\sin3x^4}\cdot\lim_{x\to0}\cos3x^4 \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3\cos3x^4} \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3} \\
&=\lim_{x\to0}\dfrac{2-2\cos2x}{36x^2} \\
&=\lim_{x\to0}\dfrac{4\sin2x}{72x} \\
&=\lim_{x\to0}\dfrac{8\cos2x}{72} \\
&=\dfrac19\end{align*}$$
Very nice, thank you.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K