MHB Calculating $\displaystyle \lim_{x\to 0}$ Complex Limit

Guest2
Messages
192
Reaction score
0
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$

How do you calculate this one?

L'hopital gives me

$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$
 
Physics news on Phys.org
Guest said:
$\displaystyle \lim_{x \to 0} \frac{x^2-\sin^2{x}}{\tan(3x^4)}$

How do you calculate this one?

L'hopital gives me

$\displaystyle \lim_{x \to 0} \frac{2x\cos^2(3x^4)-\sin{2x}\cos^2(3x^4)}{12x^3}$

This is another $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$ indeterminate form, so use L'Hospital's Rule again. If you keep getting indeterminate forms, keep using it...
 
Prove It said:
This is another $\displaystyle \begin{align*} \frac{0}{0} \end{align*}$ indeterminate form, so use L'Hospital's Rule again. If you keep getting indeterminate forms, keep using it...
Yeah, but this time you have to use it like four times! :mad:

I got it solved by series expansion, though, so all is good. :)
 
$$\begin{align*}\lim_{x\to0}\dfrac{x^2-\sin^2x}{\tan3x^4}&=\lim_{x\to0}
\dfrac{x^2-\sin^2x}{\sin3x^4}\cdot\lim_{x\to0}\cos3x^4 \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3\cos3x^4} \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3} \\
&=\lim_{x\to0}\dfrac{2-2\cos2x}{36x^2} \\
&=\lim_{x\to0}\dfrac{4\sin2x}{72x} \\
&=\lim_{x\to0}\dfrac{8\cos2x}{72} \\
&=\dfrac19\end{align*}$$
 
greg1313 said:
$$\begin{align*}\lim_{x\to0}\dfrac{x^2-\sin^2x}{\tan3x^4}&=\lim_{x\to0}
\dfrac{x^2-\sin^2x}{\sin3x^4}\cdot\lim_{x\to0}\cos3x^4 \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3\cos3x^4} \\
&=\lim_{x\to0}\dfrac{2x-\sin2x}{12x^3} \\
&=\lim_{x\to0}\dfrac{2-2\cos2x}{36x^2} \\
&=\lim_{x\to0}\dfrac{4\sin2x}{72x} \\
&=\lim_{x\to0}\dfrac{8\cos2x}{72} \\
&=\dfrac19\end{align*}$$
Very nice, thank you.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top