Calculating Distance Traveled (Arc Length)

Click For Summary
SUMMARY

The discussion centers on calculating the arc length of the curve defined by the equation y = 156 - (x - 40)²/60 over the interval from x = 0 to x = 85. The correct formula for arc length is established as S = ∫√(1 + (y')²) dx, where y' = (40 - x)/30. After applying trigonometric substitution and integration techniques, participants arrive at an arc length of approximately 108.296, confirming the calculations through numerical methods in MATLAB. The importance of correct substitution and limits in integration is emphasized throughout the discussion.

PREREQUISITES
  • Understanding of arc length calculation using integrals
  • Familiarity with trigonometric substitution in calculus
  • Knowledge of derivatives and their applications in arc length
  • Basic proficiency in MATLAB for numerical approximation
NEXT STEPS
  • Study the application of trigonometric substitution in integral calculus
  • Learn about numerical integration techniques in MATLAB
  • Explore advanced arc length problems involving parametric equations
  • Review the properties and applications of hyperbolic functions in calculus
USEFUL FOR

Students and educators in calculus, particularly those focusing on arc length calculations, as well as anyone interested in applying numerical methods for curve analysis in MATLAB.

colonelone
Messages
8
Reaction score
0

Homework Statement



Given y = 156 - (x - 40)2/60. x = 0 and x = 85 Find distance traveled

Homework Equations



Arc Length S = integral of square root of ( y' )2

The Attempt at a Solution



Doing this I get the trig sub tan(t) = (x - 40)/ 30 (Told by teacher to use this instead of -(x - 40)/30 )
so x = 30tan(t) + 40
and dx = 30sec2(t)

So then under the radical I get 1 + ( - (tan (t) )2
So is this equal to the square root of sec2(t)?

Assuming it is, I get the integral of sec2(t) times 30sec2(t) or sec3(t)

I know how to do this (I think) but I'm really not sure (I can't use what's written in the back of my book).

Doing the work I get:

S(x) = 15sec(t)tan(t) + (1/2) ln[ (sec(t) + tan(t) ]
Substitution x back in for t gives

tan(t) = (x-40)/30
and
sec(t) = square root [ 1 + ( ( -x + 40)/(30) )2

But evaluating this from 0 to 85 gives me an arc length of ~ 75.05, which I know can't be right, but I can't figure out where I went wrong.
 
Physics news on Phys.org
Isn't it S= integral (sqrt( 1+ (y')^2)) ?

y' = (40-x)/30
(y')^2 = ((40-x)^2)/900
integral sqrt(1+((40-x)^2)/900), x=0..85 ~ 108.296

As a matter of fact you could've estimated this distance by taking mid-way point (in this case its an inflection point (x-40)/30 = 0 -> x=40

at x=40, y=156
at x=0, y=129.3
at x=85, y=122.25

As you can see you can draw 2 lines from x=0 to x=40, and from x=40 to x=85, then add up the distances to get your approximate arc length:

sqrt((0-40)^2+(156-129.3)^2) + sqrt((85-40)^2 + (156-122.25)^2) ~ 104.34
 
Last edited:
cronxeh said:
Isn't it S= integral (sqrt( 1+ (y')^2)) ?

y' = (40-x)/30
(y')^2 = ((40-x)^2)/900
integral sqrt(1+((40-x)^2)/900), x=0..85 ~ 108.296

As a matter of fact you could've estimated this distance by taking mid-way point (in this case its an inflection point (x-40)/30 = 0 -> x=40

at x=40, y=156
at x=0, y=129.3
at x=85, y=122.25

As you can see you can draw 2 lines from x=0 to x=40, and from x=40 to x=85, then add up the distances to get your approximate arc length:

sqrt((0-40)^2+(156-129.3)^2) + sqrt((85-40)^2 + (156-122.25)^2) ~ 104.34

What equation did you use to evaluate s(x)?

Once I redid/rechecked everything I got

s(x) = 15 [ sqrt [ 1 + ( ( -x + 40)/(30 ) )2 ] * ( ( x - 40 ) / (30) ) + ln [ sqrt [ 1 + ( ( -x + 40)/(30 ) )2 + ( ( x - 40 ) / (30) ) ]
 
S = \int^{85}_{0} \sqrt{1+\frac{(40-x)^{2}}{900}} dx
 
cronxeh said:
S = \int^{85}_{0} \sqrt{1+\frac{(40-x)^{2}}{900}} dx

I mean after all the trig sub, the final equation that you substitute 85 and 0 into.
 
colonelone said:
I mean after all the trig sub, the final equation that you substitute 85 and 0 into.

1/60 sqrt((x-40)^2+900) (x-40)+15 sinh^(-1)((x-40)/30)
 
cronxeh said:
1/60 sqrt((x-40)^2+900) (x-40)+15 sinh^(-1)((x-40)/30)

We haven't learned about hyperbolic functions yet. Is there a way to do it without using sinh, i.e. by using trig sub and integration by parts.
 
colonelone said:
We haven't learned about hyperbolic functions yet. Is there a way to do it without using sinh, i.e. by using trig sub and integration by parts.

Sure, its just what you did but with the correct limits, which I think you should double check

Let u=40-x, du=-dx, now do the limits here

integral -sqrt(1+(u^2)/900) du

then substitute u=30*tan(s), du=30*sec^2(s)ds

= integral -sqrt(tan^2(s)+1) =
where s=arcan(u/30)

integral -30*sec^3(s)ds =
-15*tan(s)sec(s) - 15*integral(sec(s)ds)
= -15tan(s)sec(s) - 15*ln(tan(s)+sec(s))
sub back s=arctan(u/30) and u=40-x:

1/60*(x-40)*sqrt(x^2-80*x+2500) - 15*ln(1/30*(sqrt(x^2-80*x+2500)-x+40))
=58.4839-(-49.8125) = 108.2964
 
cronxeh said:
Sure, its just what you did but with the correct limits, which I think you should double check

Let u=40-x, du=-dx, now do the limits here

integral -sqrt(1+(u^2)/900) du

then substitute u=30*tan(s), du=30*sec^2(s)ds

= integral -sqrt(tan^2(s)+1) =
where s=arcan(u/30)

integral -30*sec^3(s)ds =
-15*tan(s)sec(s) - 15*integral(sec(s)ds)
= -15tan(s)sec(s) - 15*ln(tan(s)+sec(s))
sub back s=arctan(u/30) and u=40-x:

1/60*(x-40)*sqrt(x^2-80*x+2500) - 15*ln(1/30*(sqrt(x^2-80*x+2500)-x+40))
=58.4839-(-49.8125) = 108.2964

For some reason when I plug in the numbers I get an arc length of 118.693625.

Also, where did the 1/60 and 1/30 come from? It seems like you were plugging in ( 40 - x) / 900 for tan(s) instead of ( 40 - x ) /30
 
  • #10
colonelone said:
For some reason when I plug in the numbers I get an arc length of 118.693625.

Also, where did the 1/60 and 1/30 come from? It seems like you were plugging in ( 40 - x) / 900 for tan(s) instead of ( 40 - x ) /30

= -15tan(s)sec(s) - 15*ln(tan(s)+sec(s))
sub back s=arctan(u/30) and u=40-x:

If you agree with that line, then watch the magic:

tan(arctan(x)) = x
cos(arctan(x)) = 1/sqrt(x^2+1)
sec(arctan(x)) = sqrt(x^2+1)
s=arctan((40-x)/30)

-15tan(s)sec(s) - 15*ln(tan(s)+sec(s)) =
-15*ln(tan(s) + 1/cos(s)) - (15*tan(s))/cos(s) =
-15*((40-x)/30)*sqrt(((40-x)/30)^2+1) - 15*ln(((40-x)/30)+sqrt(((40-x)/30)^2+1)) =
(x/2 - 20)*((x/30 - 4/3)^2 + 1)^(1/2) - 15*ln(((x/30 - 4/3)^2 + 1)^(1/2) - x/30 + 4/3)
Plug in your limits x=85, x=0:

58.4839 - (-49.8125) = 108.2964

If you are not a believer in the answer, consider that we forget calculus for a second and just approximate it:

Given y = 156-(x-40)^2/60, let's do 10 intervals from x=0 to x=85:
distance traveled is then ( in MATLAB ):
Code:
x=0:85
d=0;
for i=1:85
d=d+sqrt(((156-(x(i)-40)^2/60) - (156-(x(i+1)-40)^2/60))^2 + (x(i)-x(i+1))^2);
end
d
d =

108.2942

If you want me to go more accurate,

Code:
x=0:0.1:85
d=0;
for i=1:850
d=d+sqrt(((156-(x(i)-40)^2/60) - (156-(x(i+1)-40)^2/60))^2 + (x(i)-x(i+1))^2);
end
d
d =

108.2964
 
Last edited:

Similar threads

Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
3K
Replies
28
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K