Calculating E Field of Dipoles at Distance r: Griffiths 4.5 Solution

  • Thread starter Thread starter Ghost117
  • Start date Start date
  • Tags Tags
    Dipoles Field
Click For Summary
The discussion revolves around calculating the electric field of two dipoles, p1 and p2, at a distance r apart, as presented in Griffiths' electrodynamics textbook. The key confusion arises from the values of the angle theta used in the calculations; theta is π/2 for the field of p1 at p2 and π for the field of p2 at p1. The participants emphasize the importance of understanding the spherical coordinate system to correctly determine these angles. It is noted that when calculating the field of p2 at p1, a new coordinate system must be established where the z-axis aligns with p2. Overall, the conversation highlights the necessity of a solid grasp of spherical coordinates in solving dipole field problems.
Ghost117
Messages
50
Reaction score
3
This is part of a question from Griffiths 4.5 (electrodynamics, 4th edition)

Homework Statement



p1 and p2 are (perfect) dipoles a distance r apart (Their alignment is such that p1 is perpendicular to the line separating them (pointing upwards) and p2 is parallel to the line separating them (pointing away from p1).)

What is Field of p1 at p2, and the Field of p2 at p1?

Homework Equations



Edip(r,θ) = p/(4πε0r3) * (2cosθr + sinθθ)

The Attempt at a Solution



I actually have the official solution for this, but I don't understand it... The theta value in the solution uses theta = π/2 for the field of p1 at p2, but a value of theta = π, for the equation for p2 at p1.. And I don't see where either of these theta values are coming from (my spherical coordinates are very weak, and I suspect that's the real problem here.)

Thanks
 
Physics news on Phys.org
Note how θ is defined in the diagram (given back in chapter 3). See attached figure.
Imagine that the dipole shown is p1. Where would p2 be located in this figure? What would be the value of θ at the location of p2?
 

Attachments

  • dipole coordinates.png
    dipole coordinates.png
    3.6 KB · Views: 480
  • Like
Likes Ghost117
TSny said:
Note how θ is defined in the diagram (given back in chapter 3). See attached figure.
Imagine that the dipole shown is p1. Where would p2 be located in this figure? What would be the value of θ at the location of p2?

Yes that's the diagram I'm trying to use, and for E1, I can see why theta = pi/2 (since p2 is on the y-axis in that diagram, pointing away.) But I don't understand why theta = pi when calculating E2 (field of p2 at p1)... If I set p2 as my zero and count to p1 (clockwise) I get 3pi/2... not pi... I just don't see how I can get pi at all for any angle between these two dipoles...
 
When you want to calculate the field of ##\mathbf{p}_2## at ##\mathbf{p}_1##, you have to use a new coordinate system in which the z axis is parallel to ##\mathbf{p}_2## and its positive direction points in the same direction as ##\mathbf{p}_2## does.
Ghost117 said:
If I set p2 as my zero and count to p1 (clockwise) I get 3pi/2
Polar angle only runs from 0 to ##\pi##.
 
  • Like
Likes Ghost117
blue_leaf77 said:
When you want to calculate the field of ##\mathbf{p}_2## at ##\mathbf{p}_1##, you have to use a new coordinate system in which the z axis is parallel to ##\mathbf{p}_2## and its positive direction points in the same direction as ##\mathbf{p}_2## does.

Polar angle only runs from 0 to ##\pi##.

Thank you, I suspected it was going to come down to a basic problem with my understanding of the spherical coordinate system.
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
10K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 6 ·
Replies
6
Views
3K