MHB Calculating Hyperbolic Limit of $\frac{x}{\cosh{x}}$

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Hyperbolic Limit
Guest2
Messages
192
Reaction score
0
How do you calculate the limit $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$
 
Physics news on Phys.org
$$\cosh(x)=\dfrac{e^x+e^{-x}}{2}$$
 
greg1313 said:
$$\cosh(x)=\dfrac{e^x+e^{-x}}{2}$$
Thanks. Is this correct?

$\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}} = \frac{1}{2} \lim_{x \to \infty} \frac{xe^{-x}}{1+e^{-2x}} = \frac{0}{1+0} = 0.$
 
PHP:
Guest said:
How do you calculate the limit $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$

This is an $\displaystyle \begin{align*} \frac{\infty}{\infty} \end{align*}$ indeterminate form, so you can use L'Hospital's Rule...

$\displaystyle \begin{align*} \lim_{x \to \infty} \frac{x}{\cosh{(x)}} &= \lim_{x \to \infty} \frac{\frac{\mathrm{d}}{\mathrm{d}x} \, \left( x \right) }{\frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \cosh{(x)} \right] } \textrm{ by L'Hospital's Rule} \\ &= \lim_{x \to \infty} \frac{1}{\sinh{(x)}} \\ &= 0 \end{align*}$
 

Similar threads

Replies
3
Views
1K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
3
Views
3K
Replies
16
Views
4K
Replies
4
Views
2K
Back
Top