MHB Calculating Hyperbolic Limit of $\frac{x}{\cosh{x}}$

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Hyperbolic Limit
Click For Summary
The limit of the expression $\lim_{x \to \infty}\frac{x}{\cosh{x}}$ is evaluated as an indeterminate form of type $\frac{\infty}{\infty}$. By applying L'Hospital's Rule, the limit simplifies to $\lim_{x \to \infty} \frac{1}{\sinh{x}}$. Since $\sinh{x}$ approaches infinity as $x$ increases, the overall limit converges to 0. The calculations confirm that the limit is indeed 0, validating the initial query about the correctness of the approach. Thus, the limit of $\frac{x}{\cosh{x}}$ as $x$ approaches infinity is 0.
Guest2
Messages
192
Reaction score
0
How do you calculate the limit $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$
 
Physics news on Phys.org
$$\cosh(x)=\dfrac{e^x+e^{-x}}{2}$$
 
greg1313 said:
$$\cosh(x)=\dfrac{e^x+e^{-x}}{2}$$
Thanks. Is this correct?

$\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}} = \frac{1}{2} \lim_{x \to \infty} \frac{xe^{-x}}{1+e^{-2x}} = \frac{0}{1+0} = 0.$
 
PHP:
Guest said:
How do you calculate the limit $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$

This is an $\displaystyle \begin{align*} \frac{\infty}{\infty} \end{align*}$ indeterminate form, so you can use L'Hospital's Rule...

$\displaystyle \begin{align*} \lim_{x \to \infty} \frac{x}{\cosh{(x)}} &= \lim_{x \to \infty} \frac{\frac{\mathrm{d}}{\mathrm{d}x} \, \left( x \right) }{\frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \cosh{(x)} \right] } \textrm{ by L'Hospital's Rule} \\ &= \lim_{x \to \infty} \frac{1}{\sinh{(x)}} \\ &= 0 \end{align*}$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K