Calculating Hyperbolic Limit of $\frac{x}{\cosh{x}}$

  • Context: MHB 
  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Hyperbolic Limit
Click For Summary
SUMMARY

The limit calculation for $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$ results in 0. Using the definition of hyperbolic cosine, $\cosh(x) = \frac{e^x + e^{-x}}{2}$, the limit can be transformed into an indeterminate form of $\frac{\infty}{\infty}$. Applying L'Hospital's Rule, the limit simplifies to $\lim_{x \to \infty} \frac{1}{\sinh{(x)}}$, which definitively evaluates to 0.

PREREQUISITES
  • Understanding of hyperbolic functions, specifically $\cosh(x)$ and $\sinh(x)$.
  • Familiarity with limits and indeterminate forms in calculus.
  • Knowledge of L'Hospital's Rule for resolving indeterminate limits.
  • Basic proficiency in exponential functions and their properties.
NEXT STEPS
  • Study the application of L'Hospital's Rule in various limit problems.
  • Explore the properties and graphs of hyperbolic functions.
  • Learn about other forms of indeterminate limits and their resolutions.
  • Investigate the behavior of $\sinh(x)$ as $x$ approaches infinity.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking for clear examples of limit calculations involving hyperbolic functions.

Guest2
Messages
192
Reaction score
0
How do you calculate the limit $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$
 
Physics news on Phys.org
$$\cosh(x)=\dfrac{e^x+e^{-x}}{2}$$
 
greg1313 said:
$$\cosh(x)=\dfrac{e^x+e^{-x}}{2}$$
Thanks. Is this correct?

$\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}} = \frac{1}{2} \lim_{x \to \infty} \frac{xe^{-x}}{1+e^{-2x}} = \frac{0}{1+0} = 0.$
 
PHP:
Guest said:
How do you calculate the limit $\displaystyle \lim_{x \to \infty}\frac{x}{\cosh{x}}$

This is an $\displaystyle \begin{align*} \frac{\infty}{\infty} \end{align*}$ indeterminate form, so you can use L'Hospital's Rule...

$\displaystyle \begin{align*} \lim_{x \to \infty} \frac{x}{\cosh{(x)}} &= \lim_{x \to \infty} \frac{\frac{\mathrm{d}}{\mathrm{d}x} \, \left( x \right) }{\frac{\mathrm{d}}{\mathrm{d}x}\,\left[ \cosh{(x)} \right] } \textrm{ by L'Hospital's Rule} \\ &= \lim_{x \to \infty} \frac{1}{\sinh{(x)}} \\ &= 0 \end{align*}$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K